Metal to Semimetal Transition in CaMgSi Crystals Grown from Mg−Al Flux
Single crystals of CaMgSi were produced using the metal flux synthesis method in a Mg/Al 1:1 mixture. The large rod-shaped crystals measure up to 7 mm in length. This phase crystallizes with the orthorhombic TiNiSi structure type (space group Pnma; a = 7.4752(2) Å, b = 4.42720(10) Å, c = 8.3149(2) Å...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2010-03, Vol.22 (5), p.1846-1853 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single crystals of CaMgSi were produced using the metal flux synthesis method in a Mg/Al 1:1 mixture. The large rod-shaped crystals measure up to 7 mm in length. This phase crystallizes with the orthorhombic TiNiSi structure type (space group Pnma; a = 7.4752(2) Å, b = 4.42720(10) Å, c = 8.3149(2) Å; R 1 = 0.021). Despite its relationship to semiconducting Zintl phases Mg2Si and Ca2Si, CaMgSi is metallic at room temperature; this produces a positive (∼160 ppm) 29Si MAS NMR chemical shift and is supported by DOS calculations. A metal to semimetal electronic transition at around 50 K is evident in the resistivity, magnetic susceptibility, and electron paramagnetic resonance measurements. Low temperature powder X-ray diffraction data indicates that a structural distortion accompanies this transition. The electronic heat capacity coefficient (0.4695 mJ/mol·K2) determined from low temperature heat capacity data supports the designation of CaMgSi as a semimetal at low temperature. The hydrogen storage capacity of this phase is negligible (≤0.5 wt % hydrogen), although exposure to hydrogen does destabilize the structure, inducing decomposition at 500 °C. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm9033275 |