Synthesis of A Novel Spirobisnitroxide Polymer and its Evaluation in an Organic Radical Battery
A straightforward synthesis of a novel spirobisnitroxide 6 has been developed. Cyclovoltammetry of 6 revealed two distinct reversible oxidation/reduction steps separated by ca. 740 mV indicating the formation of the corresponding oxoammonium cations. Rhodium-catalyzed polymerization of 6 afforded th...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2010-02, Vol.22 (3), p.783-788 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A straightforward synthesis of a novel spirobisnitroxide 6 has been developed. Cyclovoltammetry of 6 revealed two distinct reversible oxidation/reduction steps separated by ca. 740 mV indicating the formation of the corresponding oxoammonium cations. Rhodium-catalyzed polymerization of 6 afforded the polyacetylene polymer 7 bearing the pending spirobisnitroxide groups. Additionally, cross-linked 7 was prepared in the presence of 3 mol % of N,N′-diprop-2-ynyl-oxalamide. If oxidation of both nitroxide groups is considered, 7 possesses an unprecedented high theoretical charge capacity of 174 mA h g−1. Evaluation of the cross-linked polymer 7 as a cathode material for an organic radical battery showed very good cycling stability when the potential was kept below the oxidation potential of the five-membered nitroxide subunit of 6. A presumable irreversible degradation of the polymeric backbone of 7 occurred at higher potentials, limiting the experimentally obtained charge capacity to 73 mA h g−1. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm901374u |