Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material
Herein, we present a new synthesis method for transition-metal-doped zinc oxide nanoparticles utilized and characterized for the first time as anode material for lithium-ion batteries. In fact, the introduction of a transition metal (for instance, iron or cobalt) into the zinc oxide lattice results...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2013-12, Vol.25 (24), p.4977-4985 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4985 |
---|---|
container_issue | 24 |
container_start_page | 4977 |
container_title | Chemistry of materials |
container_volume | 25 |
creator | Bresser, Dominic Mueller, Franziska Fiedler, Martin Krueger, Steffen Kloepsch, Richard Baither, Dietmar Winter, Martin Paillard, Elie Passerini, Stefano |
description | Herein, we present a new synthesis method for transition-metal-doped zinc oxide nanoparticles utilized and characterized for the first time as anode material for lithium-ion batteries. In fact, the introduction of a transition metal (for instance, iron or cobalt) into the zinc oxide lattice results in an advanced performance with reversible lithium storage capacities exceeding 900 mAh g–1, i.e., more than twice that of graphite. In situ XRD analysis reveals the electrochemical reduction of the wurtzite structure and the reversible formation of a LiZn alloy. The additional application of a carbon coating of such nanoparticles enables further improvement in terms of capacity retention and high rate (dis)charge capability. Moreover, the newly developed, simple, and environmentally friendly synthesis of these n-type doped nanoparticles is considered to be also applicable to other transition metals, presumably showing comparable electrochemical performances. |
doi_str_mv | 10.1021/cm403443t |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm403443t</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a662216857</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-760c866b17e30bc7f06c93874d6b1adc1b88d62aa4df771a3bea8c35deb177f23</originalsourceid><addsrcrecordid>eNpt0MFKAzEQBuAgCtbqwTfIxYOHaLLZ3aTHUq0Wtu3BevGyzCZZTNkmJUlR395IxZMwMDB8Mww_QteM3jFasHu1KykvS55O0IhVBSUVpcUpGlE5EaQUVX2OLmLcUsoylyP0sgngok3WO7I0CQby4PdG4zfrFF5_Wm3wCpzfQ0hWDSZiyIVX5gM3Nr3bw44svMNT5zNcQjLBwnCJznoYorn67WP0On_czJ5Js35azKYNAV5UiYiaKlnXHROG006JntZqwqUodZ6BVqyTUtcFQKl7IRjwzoBUvNImr4i-4GN0e7yrgo8xmL7dB7uD8NUy2v6k0f6lke3N0YKK7dYfgsuf_eO-AddWXkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material</title><source>ACS Publications</source><creator>Bresser, Dominic ; Mueller, Franziska ; Fiedler, Martin ; Krueger, Steffen ; Kloepsch, Richard ; Baither, Dietmar ; Winter, Martin ; Paillard, Elie ; Passerini, Stefano</creator><creatorcontrib>Bresser, Dominic ; Mueller, Franziska ; Fiedler, Martin ; Krueger, Steffen ; Kloepsch, Richard ; Baither, Dietmar ; Winter, Martin ; Paillard, Elie ; Passerini, Stefano</creatorcontrib><description>Herein, we present a new synthesis method for transition-metal-doped zinc oxide nanoparticles utilized and characterized for the first time as anode material for lithium-ion batteries. In fact, the introduction of a transition metal (for instance, iron or cobalt) into the zinc oxide lattice results in an advanced performance with reversible lithium storage capacities exceeding 900 mAh g–1, i.e., more than twice that of graphite. In situ XRD analysis reveals the electrochemical reduction of the wurtzite structure and the reversible formation of a LiZn alloy. The additional application of a carbon coating of such nanoparticles enables further improvement in terms of capacity retention and high rate (dis)charge capability. Moreover, the newly developed, simple, and environmentally friendly synthesis of these n-type doped nanoparticles is considered to be also applicable to other transition metals, presumably showing comparable electrochemical performances.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm403443t</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2013-12, Vol.25 (24), p.4977-4985</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-760c866b17e30bc7f06c93874d6b1adc1b88d62aa4df771a3bea8c35deb177f23</citedby><cites>FETCH-LOGICAL-a325t-760c866b17e30bc7f06c93874d6b1adc1b88d62aa4df771a3bea8c35deb177f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm403443t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm403443t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Bresser, Dominic</creatorcontrib><creatorcontrib>Mueller, Franziska</creatorcontrib><creatorcontrib>Fiedler, Martin</creatorcontrib><creatorcontrib>Krueger, Steffen</creatorcontrib><creatorcontrib>Kloepsch, Richard</creatorcontrib><creatorcontrib>Baither, Dietmar</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Paillard, Elie</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><title>Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Herein, we present a new synthesis method for transition-metal-doped zinc oxide nanoparticles utilized and characterized for the first time as anode material for lithium-ion batteries. In fact, the introduction of a transition metal (for instance, iron or cobalt) into the zinc oxide lattice results in an advanced performance with reversible lithium storage capacities exceeding 900 mAh g–1, i.e., more than twice that of graphite. In situ XRD analysis reveals the electrochemical reduction of the wurtzite structure and the reversible formation of a LiZn alloy. The additional application of a carbon coating of such nanoparticles enables further improvement in terms of capacity retention and high rate (dis)charge capability. Moreover, the newly developed, simple, and environmentally friendly synthesis of these n-type doped nanoparticles is considered to be also applicable to other transition metals, presumably showing comparable electrochemical performances.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpt0MFKAzEQBuAgCtbqwTfIxYOHaLLZ3aTHUq0Wtu3BevGyzCZZTNkmJUlR395IxZMwMDB8Mww_QteM3jFasHu1KykvS55O0IhVBSUVpcUpGlE5EaQUVX2OLmLcUsoylyP0sgngok3WO7I0CQby4PdG4zfrFF5_Wm3wCpzfQ0hWDSZiyIVX5gM3Nr3bw44svMNT5zNcQjLBwnCJznoYorn67WP0On_czJ5Js35azKYNAV5UiYiaKlnXHROG006JntZqwqUodZ6BVqyTUtcFQKl7IRjwzoBUvNImr4i-4GN0e7yrgo8xmL7dB7uD8NUy2v6k0f6lke3N0YKK7dYfgsuf_eO-AddWXkw</recordid><startdate>20131223</startdate><enddate>20131223</enddate><creator>Bresser, Dominic</creator><creator>Mueller, Franziska</creator><creator>Fiedler, Martin</creator><creator>Krueger, Steffen</creator><creator>Kloepsch, Richard</creator><creator>Baither, Dietmar</creator><creator>Winter, Martin</creator><creator>Paillard, Elie</creator><creator>Passerini, Stefano</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131223</creationdate><title>Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material</title><author>Bresser, Dominic ; Mueller, Franziska ; Fiedler, Martin ; Krueger, Steffen ; Kloepsch, Richard ; Baither, Dietmar ; Winter, Martin ; Paillard, Elie ; Passerini, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-760c866b17e30bc7f06c93874d6b1adc1b88d62aa4df771a3bea8c35deb177f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bresser, Dominic</creatorcontrib><creatorcontrib>Mueller, Franziska</creatorcontrib><creatorcontrib>Fiedler, Martin</creatorcontrib><creatorcontrib>Krueger, Steffen</creatorcontrib><creatorcontrib>Kloepsch, Richard</creatorcontrib><creatorcontrib>Baither, Dietmar</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Paillard, Elie</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bresser, Dominic</au><au>Mueller, Franziska</au><au>Fiedler, Martin</au><au>Krueger, Steffen</au><au>Kloepsch, Richard</au><au>Baither, Dietmar</au><au>Winter, Martin</au><au>Paillard, Elie</au><au>Passerini, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2013-12-23</date><risdate>2013</risdate><volume>25</volume><issue>24</issue><spage>4977</spage><epage>4985</epage><pages>4977-4985</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Herein, we present a new synthesis method for transition-metal-doped zinc oxide nanoparticles utilized and characterized for the first time as anode material for lithium-ion batteries. In fact, the introduction of a transition metal (for instance, iron or cobalt) into the zinc oxide lattice results in an advanced performance with reversible lithium storage capacities exceeding 900 mAh g–1, i.e., more than twice that of graphite. In situ XRD analysis reveals the electrochemical reduction of the wurtzite structure and the reversible formation of a LiZn alloy. The additional application of a carbon coating of such nanoparticles enables further improvement in terms of capacity retention and high rate (dis)charge capability. Moreover, the newly developed, simple, and environmentally friendly synthesis of these n-type doped nanoparticles is considered to be also applicable to other transition metals, presumably showing comparable electrochemical performances.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm403443t</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2013-12, Vol.25 (24), p.4977-4985 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_cm403443t |
source | ACS Publications |
title | Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition-Metal-Doped%20Zinc%20Oxide%20Nanoparticles%20as%20a%20New%20Lithium-Ion%20Anode%20Material&rft.jtitle=Chemistry%20of%20materials&rft.au=Bresser,%20Dominic&rft.date=2013-12-23&rft.volume=25&rft.issue=24&rft.spage=4977&rft.epage=4985&rft.pages=4977-4985&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm403443t&rft_dat=%3Cacs_cross%3Ea662216857%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |