Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material

Herein, we present a new synthesis method for transition-metal-doped zinc oxide nanoparticles utilized and characterized for the first time as anode material for lithium-ion batteries. In fact, the introduction of a transition metal (for instance, iron or cobalt) into the zinc oxide lattice results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2013-12, Vol.25 (24), p.4977-4985
Hauptverfasser: Bresser, Dominic, Mueller, Franziska, Fiedler, Martin, Krueger, Steffen, Kloepsch, Richard, Baither, Dietmar, Winter, Martin, Paillard, Elie, Passerini, Stefano
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we present a new synthesis method for transition-metal-doped zinc oxide nanoparticles utilized and characterized for the first time as anode material for lithium-ion batteries. In fact, the introduction of a transition metal (for instance, iron or cobalt) into the zinc oxide lattice results in an advanced performance with reversible lithium storage capacities exceeding 900 mAh g–1, i.e., more than twice that of graphite. In situ XRD analysis reveals the electrochemical reduction of the wurtzite structure and the reversible formation of a LiZn alloy. The additional application of a carbon coating of such nanoparticles enables further improvement in terms of capacity retention and high rate (dis)charge capability. Moreover, the newly developed, simple, and environmentally friendly synthesis of these n-type doped nanoparticles is considered to be also applicable to other transition metals, presumably showing comparable electrochemical performances.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm403443t