Flexible Coral-like Carbon Nanoarchitectures via a Dual Block Copolymer–Latex Templating Approach
Novel, hierarchical, micro- (800 m2 g–1), large pore volume, and highly layered porosities. The coadded block copolymer plays a triple role in the formation of the porous nanoarchitectures during hydrothermal synthesis: (1) in the formation of inverse opal pores by latex destabilization, (2) in the...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2013-12, Vol.25 (23), p.4781-4790 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel, hierarchical, micro- (800 m2 g–1), large pore volume, and highly layered porosities. The coadded block copolymer plays a triple role in the formation of the porous nanoarchitectures during hydrothermal synthesis: (1) in the formation of inverse opal pores by latex destabilization, (2) in the formation of an ordered microporous carbon wall texture by soft templating effect, and (3) in the formation of a micrometer-sized 3D continuous void by controlling the degree of spinodal phase separation. All the above nanostructuring chemistries are controllable via a simple variation in hydrothermal treatment temperature and reagent/template ratios offering nanostructural flexibility at multiple length scales, while the mild synthesis temperatures provide useful surface functionalities. The resulting materials are promising candidates for applications including (bio)electrochemistry (e.g., biofuel cells) or as biological scaffolds or separation media. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm4029676 |