A Surface Defect-Promoted Ni Nanocatalyst with Simultaneously Enhanced Activity and Stability

How to achieve supported metal nanocatalysts with simultaneously enhanced activity and stability is of vital importance in heterogeneous catalysis and remains a challenging goal. In this work, a surface defect-promoted Ni nanocatalyst with a high dispersion and high particle density embedded on a hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2013-04, Vol.25 (7), p.1040-1046
Hauptverfasser: He, Shan, Li, Changming, Chen, Hao, Su, Dangsheng, Zhang, Bingsen, Cao, Xingzhong, Wang, Baoyi, Wei, Min, Evans, David G, Duan, Xue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How to achieve supported metal nanocatalysts with simultaneously enhanced activity and stability is of vital importance in heterogeneous catalysis and remains a challenging goal. In this work, a surface defect-promoted Ni nanocatalyst with a high dispersion and high particle density embedded on a hierarchical Al2O3 matrix was fabricated via a facile method involving an in situ reduction process, which exhibits excellent activity and stability simultaneously for the reaction of CO2 methanation. HRTEM, HAADF-STEM, EXAFS, and positron annihilation spectroscopy demonstrate the existence of abundant surface vacancy clusters that serve as active sites, accounting for the significantly enhanced low-temperature activity of the supported Ni nanoparticles. In addition, the anchoring effect from the support gives rise to a high reaction stability, without sintering and/or aggregation of active species during long-term use.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm303517z