Counterion Dynamics in Polyurethane-Carboxylate Ionomers with Ionic Liquid Counterions

Polyurethane carboxylate ionomers based on poly(ethylene glycol) (M n = 600) with sodium and various ammonium, phosphonium and imidazolium cations are synthesized for systematic comparison of different cationic counterions. Generally, larger cations act as plasticizers, lowering T g because of weake...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2011-04, Vol.23 (7), p.1862-1873
Hauptverfasser: Wang, Shih-Wa, Liu, Wenjuan, Colby, Ralph H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyurethane carboxylate ionomers based on poly(ethylene glycol) (M n = 600) with sodium and various ammonium, phosphonium and imidazolium cations are synthesized for systematic comparison of different cationic counterions. Generally, larger cations act as plasticizers, lowering T g because of weaker Coulombic force for ion associations (acting as physical cross-links). T g can be reduced from 47 °C to −6 °C when replacing Na+ with large ether-oxygen containing ammonium without changing polymer composition and the lower T g can enhance ionic conductivity by 5 orders of magnitude. Ionic conductivity has a stronger correlation with segmental relaxation than T g, suggesting that counterion motion is coupled to the poly(ethylene oxide) local motions. An electrode polarization model is used to quantify the conducting ion concentration and mobility. All cation mobility follows VFT behavior, whereas conducting ion concentration has an Arrhenius temperature dependence, with slope providing activation energy and intercept determining the fraction of counterions available to participate in ionic conduction. Sodium counterions are mostly trapped by pPDI-carboxylate-pPDI segments, whereas the larger counterions are less trapped. Cation species and methoxyalkyl tails were found to impact both conducting ion concentration and their mobility but T g and α-relaxation time are the key factors for ionic conductivity at a given temperature.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm103548t