Functionalized Vertically Aligned Carbon Nanofibers as Scaffolds for Immobilization and Electrochemical Detection of Redox-Active Proteins

We have investigated the functionalization of vertically aligned carbon nanofibers with the redox-active protein cytochrome c and have characterized the resulting chemical and electrochemical activity. A comparison of monolayers with different terminal groups shows that those exposing carboxylic aci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2006-09, Vol.18 (18), p.4415-4422
Hauptverfasser: Baker, Sarah E, Colavita, Paula E, Tse, Kiu-Yuen, Hamers, Robert J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated the functionalization of vertically aligned carbon nanofibers with the redox-active protein cytochrome c and have characterized the resulting chemical and electrochemical activity. A comparison of monolayers with different terminal groups shows that those exposing carboxylic acid groups are most effective at binding active cytochrome c to carbon nanofibers. Cyclic voltammetry (CV) measurements reveal redox peaks due to electrochemical activity of the nanofiber-bound protein. CV and chemical measurements of enzymatic activity both show that nanofibers modified with cytochrome c yield approximately 10 times more activity than similarly modified surfaces of glassy carbon and gold. However, cytochrome c-modified nanofibers yield a high capacitive background, reducing the signal-to-noise ratio of the electrical measurements. We attribute this in part to inhomogeneous functionalization of the nanofibers at edge-plane versus basal-plane sites on the nanofiber surface, leading to leaky monolayers that yield increased capacitance. Our results demonstrate the ability to link chemically and electrochemically active proteins to nanofibers in a manner that preserves their activity and provide insight into the nanometer-scale factors that control the resulting chemical and electrochemical properties of biologically modified nanostructured electrodes.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm0609000