Functionalized Vertically Aligned Carbon Nanofibers as Scaffolds for Immobilization and Electrochemical Detection of Redox-Active Proteins
We have investigated the functionalization of vertically aligned carbon nanofibers with the redox-active protein cytochrome c and have characterized the resulting chemical and electrochemical activity. A comparison of monolayers with different terminal groups shows that those exposing carboxylic aci...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2006-09, Vol.18 (18), p.4415-4422 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have investigated the functionalization of vertically aligned carbon nanofibers with the redox-active protein cytochrome c and have characterized the resulting chemical and electrochemical activity. A comparison of monolayers with different terminal groups shows that those exposing carboxylic acid groups are most effective at binding active cytochrome c to carbon nanofibers. Cyclic voltammetry (CV) measurements reveal redox peaks due to electrochemical activity of the nanofiber-bound protein. CV and chemical measurements of enzymatic activity both show that nanofibers modified with cytochrome c yield approximately 10 times more activity than similarly modified surfaces of glassy carbon and gold. However, cytochrome c-modified nanofibers yield a high capacitive background, reducing the signal-to-noise ratio of the electrical measurements. We attribute this in part to inhomogeneous functionalization of the nanofibers at edge-plane versus basal-plane sites on the nanofiber surface, leading to leaky monolayers that yield increased capacitance. Our results demonstrate the ability to link chemically and electrochemically active proteins to nanofibers in a manner that preserves their activity and provide insight into the nanometer-scale factors that control the resulting chemical and electrochemical properties of biologically modified nanostructured electrodes. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm0609000 |