Vapor-Phase Lubrication:  Reaction of Phosphate Ester Vapors with Iron and Steel

Aromatic phosphate esters such as triphenyl phosphate, tricresyl phosphate (TCP), and tri(tert-butylphenyl) phosphate, have been degraded in the presence of pure iron or metal alloys such as M-50 or 52100 steel. Among these volatile degradation products are those generated from the addition of an ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2002-09, Vol.14 (9), p.3767-3775
Hauptverfasser: Johnson, David W, Morrow, Samantha, Forster, Nelson H, Saba, Costandy S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aromatic phosphate esters such as triphenyl phosphate, tricresyl phosphate (TCP), and tri(tert-butylphenyl) phosphate, have been degraded in the presence of pure iron or metal alloys such as M-50 or 52100 steel. Among these volatile degradation products are those generated from the addition of an aromatic ring to the phosphate ester. Other products, which have been identified, include substituted biphenyls and diphenyl ethers derived from the decomposition of the above-mentioned addition product. Still other products are fused ring aromatic compounds such as anthracene, which arise from secondary reactions of the initial decomposition reactions. The decomposition reactions leave a nonvolatile phosphate film on the surface of the metal. Characterization of the film with Auger spectroscopy suggests iron phosphate as the product. X-ray photoelectron spectroscopy shows the presence of a bound organic layer at the surface. A mechanism that explains many of the decomposition products and the formation of a bound glassy iron phosphate film is proposed.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm010921o