Evaluation of the Lattice Energy of the Two-Component Molecular Crystals Using Solid-State Density Functional Theory

The lattice energy E latt of the two-component crystals (three co-crystals, a salt, and a hydrate) is evaluated using two schemes. The first one is based on the total energy of the crystal and its components computed using the solid-state density functional theory method with the plane-wave basis se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2014-10, Vol.14 (10), p.4997-5003
Hauptverfasser: Vener, Mikhail V, Levina, Elena O, Koloskov, Oleg A, Rykounov, Alexey A, Voronin, Alexander P, Tsirelson, Vladimir G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lattice energy E latt of the two-component crystals (three co-crystals, a salt, and a hydrate) is evaluated using two schemes. The first one is based on the total energy of the crystal and its components computed using the solid-state density functional theory method with the plane-wave basis set. The second approach explores intermolecular energies estimated using the bond critical point parameters obtained from the Bader analysis of crystalline electron density or the pairwise potentials. The E latt values of two-component crystals are found to be lower or equal to the sum of the absolute sublimation enthalpies of the pure components. The computed energies of the supramolecular synthons vary from ∼80 to ∼30 kJ/mol and decrease in the following order: acid–amide > acid–pyridine > hydroxyl–acid > amide–amide > hydroxyl–pyridine. The contributions from different types of noncovalent interactions to the E latt value are analyzed. We found that at least 50% of the lattice energy comes from the heterosynthon and a few relatively strong H-bonds between the heterodimer and the adjacent molecules.
ISSN:1528-7483
1528-7505
DOI:10.1021/cg5005243