Unusual Designated-Tailoring on Zone-Axis Preferential Growth of Surfactant-Free ZnO Mesocrystals
An unusual designated-tailoring on zone-axis preferential growth of surfactant-free ZnO mesocrystals with different features (shapes and sizes) was successfully achieved via an additive-free complex-precursor solution method. The formation of ZnO mesocrystals here is essentially determined by the ch...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2012-05, Vol.12 (5), p.2411-2418 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An unusual designated-tailoring on zone-axis preferential growth of surfactant-free ZnO mesocrystals with different features (shapes and sizes) was successfully achieved via an additive-free complex-precursor solution method. The formation of ZnO mesocrystals here is essentially determined by the characteristic of [Zn(OH)4]2– precursors, and an oriented nanoparicle aggregation with tailoring sizes and shapes can occur in different concentration of reactants at higher reaction temperature. Spindle-like ZnO mesocrystals with tunable sizes (along the c-axis direction) were synthesized by adjusting the concentration of hydroxyl ions, and peanut-like ZnO mesocrystals with controllable sizes (along the c-axis direction) and shapes (perpendicular c-axis direction) were prepared by tailoring the concentration of zinc ions. Structural and morphological evolutions were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and field-emission scanning electron microscopy (FESEM). The study is of great significance in bottom-up assembly of controllable ordering architectures, and provides a good opportunity to understand the formation mechanism and fundamental significance of zone-axis preferential growth of ZnO mesocrystals. Significantly, it is believed that the precursor driven assembly of mesostructures reported here would provide a green way to design more and more surfactant-free metal oxide architectures with well-defined shapes. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/cg300058p |