Prediction of the Unknown Crystal Structure of Creatine Using Fully Quantum Mechanical Methods
Presented in this study is the full ab initio prediction of a previously unknown organic crystal structure. For the accurate prediction of crystal structures, the weak intermolecular forces must be well-represented. Solid-state density functional theory corrected for dispersion forces (DFT-D) is per...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2011-12, Vol.11 (12), p.5733-5740 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Presented in this study is the full ab initio prediction of a previously unknown organic crystal structure. For the accurate prediction of crystal structures, the weak intermolecular forces must be well-represented. Solid-state density functional theory corrected for dispersion forces (DFT-D) is perhaps the most effective method for providing accurate descriptions of such forces in periodic systems. The success of DFT-D in crystal structure prediction is demonstrated in the prediction of the crystal structure of creatine, which has never been experimentally determined. The proposed P21/c structure was unquestionably verified by powder X-ray diffraction and terahertz spectroscopy, demonstrating a high degree of accuracy for the predicted structure. This clearly demonstrates the capacity and the feasibility of using full quantum mechanical methods in crystal structure prediction. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/cg2013599 |