A Novel Batch Cooling Crystallizer for in Situ Monitoring of Solution Crystallization Using Energy Dispersive X-ray Diffraction
In situ X-ray diffraction monitoring of crystallization from solution is often hampered by a combination of the rather low levels of crystallized solid (typically 5 to 20 wt %) and the large background scattering that arises from the solution phase. In this work, we have attempted to overcome these...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2003-03, Vol.3 (2), p.197-201 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In situ X-ray diffraction monitoring of crystallization from solution is often hampered by a combination of the rather low levels of crystallized solid (typically 5 to 20 wt %) and the large background scattering that arises from the solution phase. In this work, we have attempted to overcome these limitations, first, by using high intensity dispersive X-rays available at the Synchrotron Radiation Source, Daresbury Laboratory, UK, and second by designing a novel batch classifying crystallizer. This crystallizer was designed to maximize the weight fraction of solid presented to the probe beam. In this configuration, solution crystallizations generating between 2 and 30 wt % of solids were monitored successfully. Three preliminary studies describe the application of this equipment to the simple real time monitoring of a crystallization event, the interconversion of two polymorphic crystalline forms, and the orientation of crystals in the fluid flow of the crystallizer. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/cg020053n |