The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case

A weak Ca2+ binding site in the bacterial serine protease subtilisin BPN' (EC 3.4.21.14) was chosen as a model to explore the feasibility of stabilizing a protein by increasing the binding affinity at a metal ion binding site. The existence of this weak Ca2+ binding site was first discovered th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1988-11, Vol.27 (22), p.8311-8317
Hauptverfasser: Pantoliano, Michael W, Whitlow, Marc, Wood, Jay F, Rollence, Michele L, Finzel, Barry C, Gilliland, Gary L, Poulos, Thomas L, Bryan, Philip N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A weak Ca2+ binding site in the bacterial serine protease subtilisin BPN' (EC 3.4.21.14) was chosen as a model to explore the feasibility of stabilizing a protein by increasing the binding affinity at a metal ion binding site. The existence of this weak Ca2+ binding site was first discovered through a study of the rate of thermal inactivation of wild-type subtilisin BPN' at 65 degrees C as a function of the free [Ca2+]. Increasing the [Ca2+] in the range 0.10-100 mM caused a 100-fold decrease in the rate of thermal inactivation. The data were found to closely fit a theoretical titration curve for a single Ca2+ specific binding site with an apparent log Ka = 1.49. A series of refined X-ray crystal structures (R less than or equal to 0.15, 1.7 A) of subtilisin in the presence of 0.0, 25.0, and 40.0 mM CaCl2 has allowed a detailed structural characterization of this Ca2+ binding site. Negatively charged side chains were introduced in the vicinity of the bound Ca2+ by changing Pro 172 and Gly 131 to Asp residues through site-directed and random mutagenesis techniques, respectively. These changes were found to increase the affinity of the Ca2+ binding site by 3.4- and 2-fold, respectively, when compared with the wild-type protein (ionic strength = 0.10). X-ray studies of these new variants of subtilisin revealed the carboxylate side chains to be 6.8 and 13.2 A, respectively, from the bound Ca2+. These distances and the degree of enhanced binding are consistent with simple electrostatic theory.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00422a004