DNA-Base Guanine as Hydrogen Getter and Charge-Trapping Layer Embedded in Oxide Dielectrics for Inorganic and Organic Field-Effect Transistors

DNA-base small molecules of guanine, cytosine, adenine, and thymine construct the DNA double helix structure with hydrogen bonding, and they possess such a variety of intrinsic benefits as natural plentitude, biodegradability, biofunctionality, low cost, and low toxicity. On the basis of these advan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-04, Vol.6 (7), p.4965-4973
Hauptverfasser: Lee, Junyeong, Park, Ji Hoon, Lee, Young Tack, Jeon, Pyo Jin, Lee, Hee Sung, Nam, Seung Hee, Yi, Yeonjin, Lee, Younjoo, Im, Seongil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA-base small molecules of guanine, cytosine, adenine, and thymine construct the DNA double helix structure with hydrogen bonding, and they possess such a variety of intrinsic benefits as natural plentitude, biodegradability, biofunctionality, low cost, and low toxicity. On the basis of these advantages, here, we report on unprecedented useful applications of guanine layer as hydrogen getter and charge trapping layer when it is embedded into a dielectric oxide of n-channel inorganic InGaZnO and p-channel organic heptazole field effect transistors (FETs). The embedded guanine layer much improved the gate stability of inorganic FETs gettering many hydrogen atoms in the gate dielectric layer of FET, and it also played as charge trapping layer to which the voltage pulse-driven charges might be injected from channel, resulting in a threshold voltage (V th) shift of FETs. Such shift state is very ambient-stable and almost irrevocable even under a high electric-field at room temperature. So, Boolean logics are nicely demonstrated by using our FETs with the guanine-embedded dielectric. The original V th is recovered only under high energy blue photons by opposite voltage pulse (charge-ejection), which indicates that our device is also applicable to nonvolatile photo memory.
ISSN:1944-8244
1944-8252
DOI:10.1021/am405998d