Environment-Friendly Antibiofouling Superhydrophobic Coatings
Hydrophobic surfaces have the potential to enhance the efficiency of a plethora of applications, from heat exchangers, to underwater structures, to food industry and oil–water filtration. A large fraction of currently available hydrophobic coatings consist of perfluorinated compounds or organosilane...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2019-09, Vol.7 (17), p.14509-14520 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrophobic surfaces have the potential to enhance the efficiency of a plethora of applications, from heat exchangers, to underwater structures, to food industry and oil–water filtration. A large fraction of currently available hydrophobic coatings consist of perfluorinated compounds or organosilane-based chemistries, both of which can be toxic and bioaccumulate in nature. Here, we develop environmentally friendly and economical superhydrophobic coatings using naturally abundant sepiolite nanoparticles functionalized with naturally extracted fatty acids from cinnamon and myristica. We demonstrate our coating on a variety of metallic and nonmetallic surfaces with dip-coating of aluminum, absorbent fabrics, glass, and even paper. Contact angle measurements revealed the ability to scalably produce high apparent advancing contact angles (>160°) with low contact angle hysteresis ( |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.9b02025 |