Preserving Both Lignin and Cellulose Chemical Structures: Flow-Through Acid Hydrotropic Fractionation at Atmospheric Pressure for Complete Wood Valorization
Poplar wood was rapidly fractionated via a flow-through reaction using aqueous solutions of an acid hydrotrope (AH), p-toluenesulfonic acid (p-TsOH), at temperatures below 98 °C. 13C–1H two-dimensional nuclear magnetic resonance (NMR) spectroscopic analyses demonstrated that the AH-solubilized ligni...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2019-06, Vol.7 (12), p.10808-10820 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poplar wood was rapidly fractionated via a flow-through reaction using aqueous solutions of an acid hydrotrope (AH), p-toluenesulfonic acid (p-TsOH), at temperatures below 98 °C. 13C–1H two-dimensional nuclear magnetic resonance (NMR) spectroscopic analyses demonstrated that the AH-solubilized lignins (AHLs) from a range of fractionation conditions with yields up to approximately 80% had a very high content of β-aryl-ether linkages compared to milled wood lignin (MWL) with a low enough condensation to facilitate subsequent reductive catalytic depolymerization resulting in a lignin monomer yield of over 30%. Gel-permeation chromatographic (GPC) and differential scanning calorimetric (DSC) analyses showed that the AHLs have high molecular weights and low glass transition temperatures T g. These AHLs also have a pinkish color suitable for applications such as cosmetics and dye dispersants. AH fractionation (AHF) preserved the cellulose fraction as solid fibers also with a light pinkish color for the materials market and solubilized up to approximately 90% of xylan which can be converted to furfural using p-TsOH in the spent liquor without additional catalysts. The advantages herein are the use of one recyclable industrial chemical such as p-TsOH in an aqueous system below water boiling temperature to valorize all three major fractions of lignocelluloses in a short time frame, with very promising yields and well-preserved lignin and cellulose structure. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.9b01634 |