Fabrication of Bacterial Cellulose/Polyaniline Nanocomposite Paper with Excellent Conductivity, Strength, and Flexibility

Bacterial cellulose/polyaniline (BC/PANI) nanocomposites display many potential applications in various fields. However, the conductivity and mechanical properties remain a challenge. Here, we developed a novel method to prepare BC/PANI nanocomposites via the chemical grafting of PANI onto epoxy mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2019-05, Vol.7 (9), p.8215-8225
Hauptverfasser: Fei, Guiqiang, Wang, Yu, Wang, Haihua, Ma, Yongning, Guo, Qian, Huang, Wenhuan, Yang, Dong, Shao, Yanming, Ni, Yonghao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial cellulose/polyaniline (BC/PANI) nanocomposites display many potential applications in various fields. However, the conductivity and mechanical properties remain a challenge. Here, we developed a novel method to prepare BC/PANI nanocomposites via the chemical grafting of PANI onto epoxy modified BC (EBC), followed by the grafting of polyacrylamide (PAM). For comparison, an in situ BC/PANI sample was also prepared. The grafting reaction between PANI and EBC and the retention of PANI on EBC were confirmed by FTIR, X-ray photoelectron spectroscopy, and elemental analysis. The cross-section morphology of BC transformed into a three-dimensional and continuous network structure with the incorporation of PANI. The effects of epoxy and PAM contents on the morphology, conductivity, and mechanical properties of PANI-g-EBC and PANI-g-EBC3/PAM nanocomposites were investigated. Compared with those of the in situ BC/PANI sample, the conductivity of PANI-g-EBC increased from 0.12 to 1.08 S/cm, while the stress increased from 8.18 to 18.47 MPa. With the addition of PAM, the conductivity of PANI-g-EBC/PAM nanocomposite paper further increased to 1.43 S/cm, and the stress increased to 47.94 MPa. The conductivity of PANI-g-EBC3/PAM nanocomposites only decreased from 1.43 to 1.36 S/cm after refolding 160 times. PANI-g-EBC and PANI-g-EBC3/PAM nanofibers could be blended with conventional plant cellulose fiber to prepare flexible and high strength conductive composite paper.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.8b06306