Critical Evaluation of Starch-Based Antibacterial Nanocomposites as Agricultural Mulch Films: Study on Their Interactions with Water and Light

In order to evaluate the potentiality of novel formulations based on starch to be used as agricultural mulch films, native and oxidized corn starch nanocomposites were prepared by extrusion using natural (Bent) and chitosan-modified bentonite (Bent-CS) fillers. The nanocomposite interactions with wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2018-11, Vol.6 (11), p.15662-15672
Hauptverfasser: Merino, Danila, Gutiérrez, Tomy J, Mansilla, Andrea Y, Casalongué, Claudia A, Alvarez, Vera A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to evaluate the potentiality of novel formulations based on starch to be used as agricultural mulch films, native and oxidized corn starch nanocomposites were prepared by extrusion using natural (Bent) and chitosan-modified bentonite (Bent-CS) fillers. The nanocomposite interactions with water were studied by means of moisture content (MC) determination, water solubility (WS), water vapor permeability (WVP), and contact angle (CA). The light transmission spectra were analyzed in order to determine the transparency and radiometric properties of films. Mechanical properties are also included and related with the cryo-fractured surface morphology observed by scanning electron microscopy (SEM). Finally, the antimicrobial action of developed nanocomposites was investigated against the phytopathogen bacterium Pseudomonas syringae pv tomato DC3000 (Psy). Results suggest that starch oxidation leads to a reduction in polarity and transparency. The incorporation of nanoclays improved water resistance but did not produce a significant effect in WVP and mechanical properties, and new strategies are required to improve the nanocomposite performance. However, the incorporation of Bent-CS exerted antibacterial activity on nanocomposites, which is an encouraging result.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.8b04162