Copper Dithiol Complex Supported on Silica Nanoparticles: A Sustainable, Efficient, and Eco-friendly Catalyst for Multicomponent Click Reaction
Silica-nanoparticle-supported copper-containing ionic liquid (SNIL-Cu(II)) provided a highly stable, active, reusable, spherical, and solid-phase catalyst for click chemistry. The SNIL-Cu(II) catalyst was readily prepared from 1,2-bis(4-pyridylthio)ethane immobilized on silica nanoparticles modif...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2016-03, Vol.4 (3), p.1454-1462 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silica-nanoparticle-supported copper-containing ionic liquid (SNIL-Cu(II)) provided a highly stable, active, reusable, spherical, and solid-phase catalyst for click chemistry. The SNIL-Cu(II) catalyst was readily prepared from 1,2-bis(4-pyridylthio)ethane immobilized on silica nanoparticles modified with 3-chloropropyltrimethoxysilane and Cu(OTf)2, and the morphology, structure, and properties of nanoparticles were investigated through different analytical tools. This catalytic system showed high activity in a one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles by click reactions between a variety of alkynes, organic halides, and sodium azide at room temperature in aqueous polyethylene glycol as a green medium with a high turnover frequency (up to 7920 h–1). Moreover, the SNIL-Cu(II) was also used as an efficient catalyst for the preparation of a series of multifold 1,4-disubstituted 1,2,3-triazoles. Also, this unique catalyst was readily reused without any decrease in its catalytic activity to give the corresponding triazoles quantitatively. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.5b01432 |