Structural Features of Formiline Pretreated Sugar Cane Bagasse and Their Impact on the Enzymatic Hydrolysis of Cellulose

Enzymatic digestibility of sugar cane bagasse could be greatly enhanced by Formiline pretreatment, which comprises a formic acid (FA) delignification followed by an alkaline deformylation. The FA can be easily recovered and recycled for delignification, indicating that this pretreatment is a green p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2016-03, Vol.4 (3), p.1255-1261
Hauptverfasser: Wu, Ruchun, Zhao, Xuebing, Liu, Dehua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enzymatic digestibility of sugar cane bagasse could be greatly enhanced by Formiline pretreatment, which comprises a formic acid (FA) delignification followed by an alkaline deformylation. The FA can be easily recovered and recycled for delignification, indicating that this pretreatment is a green process for biomass fractionation. It was found that removing hemicelluloses and lignin during pretreatment contributed to the increase of cellulose accessibility; however, delignification seemed to be more important for exposing cellulose fibers. The compact cell wall structure of raw bagasse was destroyed by removing considerable parts of lignin and hemicelluloses with liberation of cellulose fibers, and the specific surface area of the pretreated substrates increased by more than 2-fold. However, formylation of cellulose took place during FA delignification, which showed significant negative impact on the initial enzymatic hydrolysis rate and enzymatic polysaccharide conversion at 120 h. Removing formyl groups by alkaline post-treatment could well recover the cellulose digestibility but without significant alteration of the substrate structure.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.5b01298