Unveiling the Antibacterial Mechanism of Gold Nanoclusters via In Situ Transmission Electron Microscopy

Metal nanoclusters (NCs) with unique chemical and physical properties have been extensively demonstrated to be emerging nanoantibiotics for fighting bacterial infections. Understanding the antibacterial mechanisms of metal nanoclusters is important for evaluating their clinical applications as nanoa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2022-01, Vol.10 (1), p.464-471
Hauptverfasser: Kuo, Jui-Chi, Tan, Shih-Hua, Hsiao, Yu-Cheng, Mutalik, Chinmaya, Chen, Hui-Min, Yougbaré, Sibidou, Kuo, Tsung-Rong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal nanoclusters (NCs) with unique chemical and physical properties have been extensively demonstrated to be emerging nanoantibiotics for fighting bacterial infections. Understanding the antibacterial mechanisms of metal nanoclusters is important for evaluating their clinical applications as nanoantibiotics. To understand the antibacterial mechanism, gold nanoclusters (AuNCs) were applied as an antibacterial agent for real-time observations of their interactions with bacteria by in situ transmission electron microscopy (TEM). In this work, a surface ligand of glutathione-conjugated (GSH)-AuNCs was prepared via a simple hydrothermal method. Optical and structural characterizations validated the successful preparation of GSH-AuNCs. Bacterial growth curves of Acetobacter aceti revealed that the antibacterial activity of GSH-AuNCs increased with the weight concentration. The antibacterial activity of GSH-AuNCs was confirmed by the intracellular reactive oxygen species (ROS) generation induced by GSH-AuNCs in A. aceti. Furthermore, real-time observations of interactions between GSH-AuNCs and A. aceti were made using in situ liquid cell TEM. Based on the results of real-time observations, GSH-AuNCs first attached onto the bacterial membranes of A. aceti by physical adsorption and then penetrated into A. aceti by internalization. Eventually, the production of intracellular ROS induced by GSH-AuNCs caused destruction of the bacterial membranes, which led to the death of A. aceti. After the bacterial membranes had been destroyed, A. aceti eventually died.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.1c06714