Cyclewise Operation of Printed MoS 2 Transistor Biosensors for Rapid Biomolecule Quantification at Femtomolar Levels

Field-effect transistors made from MoS and other emerging layered semiconductors have been demonstrated to be able to serve as ultrasensitive biosensors. However, such nanoelectronic sensors still suffer seriously from a series of challenges associated with the poor compatibility between electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2017-02, Vol.2 (2), p.274-281
Hauptverfasser: Ryu, Byunghoon, Nam, Hongsuk, Oh, Bo-Ram, Song, Yujing, Chen, Pengyu, Park, Younggeun, Wan, Wenjie, Kurabayashi, Katsuo, Liang, Xiaogan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Field-effect transistors made from MoS and other emerging layered semiconductors have been demonstrated to be able to serve as ultrasensitive biosensors. However, such nanoelectronic sensors still suffer seriously from a series of challenges associated with the poor compatibility between electronic structures and liquid analytes. These challenges hinder the practical biosensing applications that demand rapid, low-noise, highly specific biomolecule quantification at femtomolar levels. To address such challenges, we study a cyclewise process for operating MoS transistor biosensors, in which a series of reagent fluids are delivered to the sensor in a time-sequenced manner and periodically set the sensor into four assay-cycle stages, including incubation, flushing, drying, and electrical measurement. Running multiple cycles of such an assay can acquire a time-dependent sensor response signal quantifying the reaction kinetics of analyte-receptor binding. This cyclewise detection approach can avoid the liquid-solution-induced electrochemical damage, screening, and nonspecific adsorption to the sensor and therefore improves the transistor sensor's durability, sensitivity, specificity, and signal-to-noise ratio. These advantages in combination with the inherent high sensitivity of MoS biosensors allow for rapid biomolecule quantification at femtomolar levels. We have demonstrated the cyclewise quantification of Interleukin-1β in pure and complex solutions (e.g., serum and saliva) with a detection limit of ∼1 fM and a total detection time ∼23 min. This work leverages the superior properties of layered semiconductors for biosensing applications and advances the techniques toward realizing fast real-time immunoassay for low-abundance biomolecule detection.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.6b00795