Room Temperature Electrical Control of Single Photon Sources at 4H-SiC Surface
Single photon source (SPS) providing nonclassical light states on demand is one of the key technologies for the application of quantum communication and optical quantum computer. In this paper, room temperature electrical control of single photon emission from defects at 4H-SiC surface is presented....
Gespeichert in:
Veröffentlicht in: | ACS photonics 2018-08, Vol.5 (8), p.3159-3165 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single photon source (SPS) providing nonclassical light states on demand is one of the key technologies for the application of quantum communication and optical quantum computer. In this paper, room temperature electrical control of single photon emission from defects at 4H-SiC surface is presented. Planar-type 4H-SiC p+nn+ diodes are fabricated and defects that act as SPS are formed on the surface of n-type epi-layer by field oxidation process. The photon emission properties of SPSs are investigated using a home-built confocal microscopy. Results show that the electroluminescence (EL) intensity of SPS can be controlled by minority carrier injection of forward bias voltages, while the photoluminescence (PL) intensity of SPS can be controlled by reverse bias voltages. No significant variations due to applied bias voltages are observed in the EL and PL spectra, indicating the defect structure and charge state are unchanged. The PL intensity modulation by switching a reverse bias voltage is also demonstrated. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.8b00375 |