Transparent, Wearable, Broadband, and Highly Sensitive Upconversion Nanoparticles and Graphene-Based Hybrid Photodetectors
Numerous investigations of photon upconversion in lanthanide-doped upconversion nanoparticles (UCNPs) have led to its application in the fields of bioimaging, biodetection, cancer therapy, displays, and energy conversion. Herein, we demonstrate a new approach toward lanthanide-doped UCNPs and a grap...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2018-06, Vol.5 (6), p.2336-2347 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerous investigations of photon upconversion in lanthanide-doped upconversion nanoparticles (UCNPs) have led to its application in the fields of bioimaging, biodetection, cancer therapy, displays, and energy conversion. Herein, we demonstrate a new approach toward lanthanide-doped UCNPs and a graphene hybrid planar and rippled structure photodetector. The multi-energy sublevels from the 4fn electronic configuration of lanthanides results in longer excited state lifetime for photogenerated charge carriers. This opens up a new regime for ultra-high-sensitivity and broadband photodetection. Under 808 nm infrared light illumination, the planar hybrid photodetector shows a photoresponsivity of 190 AW–1, which is higher than the currently reported responsivities of the same class of devices. Also, the rippled graphene and UCNPs hybrid photodetector on a poly(dimethylsiloxane) substrate exhibits an excellent stretchability, wearability, and durability with high photoresponsivity. This design makes a significant contribution to the ongoing research in the field of wearable and stretchable optoelectronic devices. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.8b00141 |