Interfacial Molecular Engineering for Efficient Sn Perovskite Light-Emitting Diodes
In recent years, perovskite light-emitting diodes (PeLEDs) have demonstrated exceptional potential, achieving high external quantum efficiencies (EQEs) exceeding 20%. However, these advancements have primarily focused on visible colors, and toxic elements such as Pb are used in these devices. Tin (S...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2024-11, Vol.11 (11), p.4941-4947 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, perovskite light-emitting diodes (PeLEDs) have demonstrated exceptional potential, achieving high external quantum efficiencies (EQEs) exceeding 20%. However, these advancements have primarily focused on visible colors, and toxic elements such as Pb are used in these devices. Tin (Sn) perovskites with a narrow band gap of nearly 1.3 eV present a promising candidate for lead-free near-infrared PeLEDs. Nonetheless, Sn oxidation and high defect density from fast crystallization are still hurdles to overcome. This study investigates the impact of a newly synthesized ethylenedioxythiophene (EDOT)-based conjugated organic ligand on Sn-based PeLEDs, aiming to enhance device performance by reducing the defect density and Sn oxidation. The EDOT-treated PeLED device achieves a high EQE of 6.4% and exhibits stable electroluminescence spectra, demonstrating the potential of ligand treatments in optimizing Sn-based PeLEDs. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.4c01467 |