Unusual Optical, Electric, and Magnetic Behaviors of OLEDs due to Exothermic/Endothermic Dexter-Energy-Transfer and Fusion Channels of Hot/Cold Triplet Excitons

Hot-exciton-based organic light-emitting diodes (HE-OLEDs) have aroused more attention due to their advantages of low cost, high efficiency, and negligible efficiency roll-off. However, their physical behaviors need further investigation because of the evolution diversity of excited states existing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS photonics 2024-11, Vol.11 (11), p.4567-4577
Hauptverfasser: Wu, Yuting, Wang, Jingjing, Chen, Jing, Wang, Huiyao, Yang, Song, Lu, Hong, Liu, Junhong, Wang, Bo, Peng, Teng, Yang, Jun, Zhou, Yingqiong, Zhang, Keyi, Li, Zuo, Yi, Yingfei, Cheng, Lihong, Zhang, Sijie, Yu, Tian, Zhu, Hongqiang, Xiong, Zuhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hot-exciton-based organic light-emitting diodes (HE-OLEDs) have aroused more attention due to their advantages of low cost, high efficiency, and negligible efficiency roll-off. However, their physical behaviors need further investigation because of the evolution diversity of excited states existing in HE-OLEDs. Herein, we employ the two frequently used hosts tris­(8-hydroxyquinoline)aluminum (Alq3) and 4,4′-N,N′-dicarbazolebiphenyl (CBP) and the hot-exciton emissive guests rubrene (Rb) and its derivative 2,8-di-tert-butyl-5,11-bis­(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb) to make four HE-OLEDs and use well-known fingerprint magneto-electroluminescence (MEL) curves to probe their microscopic dynamic processes. Interestingly, we find abundant optical, electric, and magnetic behaviors of HE-OLEDs due to exothermic and endothermic Dexter-energy-transfer (DET) and triplet fusion (TF) channels of hot/cold excitons. Specifically, for the case of different bias currents at room temperature, both the low-field MEL curves of Rb- and TBRb-doped Alq3-based OLEDs show a normal intersystem crossing (ISC) of polaron pairs, but those of Rb- and TBRb-doped CBP-based OLEDs present a conversion from a high-level reverse ISC (HL-RISC, S1 ← T2) to an ISC and a normal HL-RISC, respectively, which weakens with an elevated bias current. Moreover, both the high-field MEL curves of Rb- and TBRb-doped Alq3-based (CBP-based) OLEDs show a normal T1F (T2F) of cold (hot) triplet excitons, which strengthens with elevated bias currents. For the case of constant bias currents at variable temperatures, both the low-field MEL curves of Rb- and TBRb-doped Alq3-based OLEDs show an abnormal ISC, which rises with a reducing temperature, but those of Rb- and TBRb-doped CBP-based OLEDs depict a conversion from an ISC to a HL-RISC and a normal HL-RISC, respectively, which intensifies with a decreasing temperature. In addition, the high-field MEL curves of Rb- and TBRb-doped Alq3-based OLEDs separately show a normal and an abnormal T1F, but those of both of Rb- and TBRb-doped CBP-based OLEDs exhibit a normal T2F, which strengthens with a reducing temperature. Furthermore, the quantum efficiency of Rb- and TBRb-doped Alq3-based OLEDs separately show nonmonotonically and monotonically decreased tendencies, but both Rb- and TBRb-doped CBP-based OLEDs show monotonically increased tendencies with a decreasing temperature. Surprisingly, all of the above enriched physical behaviors can be reasonab
ISSN:2330-4022
2330-4022
DOI:10.1021/acsphotonics.4c00809