Room-Temperature Blackbody-Sensitive and Fast Infrared Photodetectors Based on 2D Tellurium/Graphene Van der Waals Heterojunction
Emerging low-dimensional materials exhibit the potential in realizing next-generation room-temperature blackbody-sensitive infrared detectors. As a narrow band gap semiconductor, low-dimensional tellurium (Te) has been a focus of infrared detector research attention because of its high hole mobility...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2022-05, Vol.9 (5), p.1775-1782 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Emerging low-dimensional materials exhibit the potential in realizing next-generation room-temperature blackbody-sensitive infrared detectors. As a narrow band gap semiconductor, low-dimensional tellurium (Te) has been a focus of infrared detector research attention because of its high hole mobility, large absorptivity, and environmental stability. However, it is still a challenge to fabricate blackbody-sensitive Te-based infrared detectors with a low dark current and fast speed. In this work, a heterojunction device based on Te and graphene is constructed, achieving high detectivity and a fast response time from visible to mid-infrared. Specifically, under 2 μm laser irradiation, the heterojunction photodetector exhibits a detectivity of 1.04 × 109 cm Hz1/2 W–1, a fast response time of 28 μs, and good ambient stability. Moreover, the photodetector demonstrates a room-temperature blackbody sensitivity with the peak detectivity of up to 3.69 × 108 cm Hz1/2 W–1 under zero bias. Linear array devices are further explored and show good performance uniformity for potential imaging applications. Our work demonstrates that the Te/graphene heterojunction detector will be one of the competitive candidates for next-generation uncooled blackbody-sensitive infrared photodetectors. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.2c00246 |