Photocatalytic-Driven Antiviral Activities of Heterostructured BiOCl 0.2 Br 0.8 - BiOBr Semiconductors

Numerous methods for eliminating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being extensively examined in recent years as a result of the COVID-19 pandemic and its adverse effects on society. Photocatalysis is among the most encouraging solutions since it has the capacity to fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-04, Vol.9 (16), p.18183-18190
Hauptverfasser: Abbasi, Razan, Gnayem, Hani, Sasson, Yoel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous methods for eliminating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being extensively examined in recent years as a result of the COVID-19 pandemic and its adverse effects on society. Photocatalysis is among the most encouraging solutions since it has the capacity to fully annihilate pathogens, surpassing conventional disinfecting methods. A heterostructured photocatalytic composite of (70%W BiOCl Br with 30%W BiOBr) was prepared via a simple synthetic route that yielded microspheres ∼3-4 μm in diameter. The composite was evidenced to inactivate stubborn enveloped viruses. By utilizing scanning electron microscopy, transmission electron microscopy, N sorption, and X-ray diffraction, the morphology and the chemical composition of the heterostructured composite was revealed. Full elimination of SARS-CoV-2 occurred 5 min following the light-activation of the photocatalytic mixture. Illumination absence bared a slower yet effective result of full viral decomposition at a time span of 25 min. A comparable efficacious outcome was observed in the study case of vesicular stomatitis virus with complete diminishing within 30 min of visible light exposure.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c10310