Enhancing the Charge Transportation Ability of Yolk–Shell Structure for High-Rate Sodium and Potassium Storage

The microstructure of large-capacity anodes is of great importance in determining the performance of sodium- and potassium-ion batteries. Yolk–shell nanostructures promise excellent structural stability but suffer from insufficient charge transfer rate during cycles. Herein, we tackle this challenge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-04, Vol.14 (4), p.4463-4474
Hauptverfasser: Zhao, Yi, Shi, Xiuling, Ong, Samuel Jun Hoong, Yao, Qianqian, Chen, Bingbing, Hou, Kun, Liu, Chuntai, Xu, Zhichuan J, Guan, Lunhui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microstructure of large-capacity anodes is of great importance in determining the performance of sodium- and potassium-ion batteries. Yolk–shell nanostructures promise excellent structural stability but suffer from insufficient charge transfer rate during cycles. Herein, we tackle this challenge by constructing a single-walled carbon nanotube (SWNT) internally bridged yolk–shell structure, inside which SWNTs cover the surface of the yolk and connect the yolk and shell, for better electron/ion transportation. Combining the merits of both yolk–shell structure and conductive SWNT channels, the as-prepared Fe1–x S/SWNT@C composite manifests high reversible capacity and ultralong cycling stability up to 8700 cycles. Moreover, it displays the best rate capability (317 mA h g–1 at 20 A g–1 for Na+ and 236 mA h g–1 at 10 A g–1 for K+) among the reported yolk–shell structures and iron-sulfide-based anodes thus far. The kinetic analysis and density functional theory calculations further reveal that the Fe1–x S/SWNT heterointerface can effectively enhance the reversibility of K+ storage and decrease the K+ diffusion energy barrier, leading to excellent pseudocapacitive behavior and fast ion transportation for outstanding rate capability.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.9b10045