Peptide-Driven Shape Control of Low-Dimensional DNA Nanostructures
We report the rational design and fabrication of unusual low-dimensional DNA nanostructures through programmable and sequence-specific peptide interactions. Dual-bioactive block copolymers composed of DNA and amino acid-based polymers (DNA-b-poly(amino acid)) were synthesized by coupling oligonucle...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-02, Vol.14 (2), p.2276-2284 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the rational design and fabrication of unusual low-dimensional DNA nanostructures through programmable and sequence-specific peptide interactions. Dual-bioactive block copolymers composed of DNA and amino acid-based polymers (DNA-b-poly(amino acid)) were synthesized by coupling oligonucleotides to phenylalanine (Phe)-based polymers. Unlike prototypical DNA block copolymers, which typically form simple spherical micelles, DNA-b-poly(amino acid) assemble into various low-dimensional structures such as nanofibers, ribbons, and sheets through controllable amino acid interactions. Moreover, DNA-b-poly(amino acid) assemblies can undergo protease-induced fiber-to-sheet shape transformations, where the morphology change is dictated by the type of enzymes and amino acid sequences. The peptide-based self-assembly reported here provides a programmable approach to fabricate dynamic DNA assemblies with diverse and unusual low-dimensional structures. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.9b09312 |