Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear
Smart clothing has demonstrated potential applications in a wide range of wearable fields for human body monitoring and self-adaption. However, current wearable sensors often suffer from not seamlessly integrating with normal clothing, restricting sensing ability, and a negative wearing experience....
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-01, Vol.14 (1), p.559-567 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Smart clothing has demonstrated potential applications in a wide range of wearable fields for human body monitoring and self-adaption. However, current wearable sensors often suffer from not seamlessly integrating with normal clothing, restricting sensing ability, and a negative wearing experience. Here, integrated smart clothing is fabricated by employing multiscale disordered porous elastic fibers as sensing units, which show the capability of inherently autonomous self-sensing (i.e., strain and temperature sensing) and self-cooling. The multiscale disordered porous structure of the fibers contributes to the high transparency of mid-infrared human body radiation and backscatter of visible light, which allows the microenvironment temperature between the skin and clothing to drop at least ∼2.5 °C compared with cotton fabrics. After the capillary-assisted adsorption of graphene inks, the modified porous fibers could also possess real-time strain and temperature-sensing capacities with a high gauge factor and thermal coefficient of resistance. As a proof of concept, the integrated smart sportswear achieved the measuring of body temperature, the tracking of large-scale limb movements, and the collection of subtle human physiological signals, along with the intrinsic self-cooling ability. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.9b06899 |