Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity

Intratumoral glucose depletion-induced cancer starvation represents an important strategy for anticancer therapy, but it is often limited by systemic toxicity, nonspecificity, and adaptive development of parallel energy supplies. Herein, we introduce a concept of cascaded catalytic nanomedicine by c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-08, Vol.13 (8), p.8890-8902
Hauptverfasser: Ma, Yinchu, Zhao, Yangyang, Bejjanki, Naveen Kumar, Tang, Xinfeng, Jiang, Wei, Dou, Jiaxiang, Khan, Malik Ihsanullah, Wang, Qin, Xia, Jinxing, Liu, Hang, You, Ye-Zi, Zhang, Guoqing, Wang, Yucai, Wang, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intratumoral glucose depletion-induced cancer starvation represents an important strategy for anticancer therapy, but it is often limited by systemic toxicity, nonspecificity, and adaptive development of parallel energy supplies. Herein, we introduce a concept of cascaded catalytic nanomedicine by combining targeted tumor starvation and deoxygenation-activated chemotherapy for an efficient cancer treatment with reduced systemic toxicity. Briefly, nanoclustered cascaded enzymes were synthesized by covalently cross-linking glucose oxidase (GOx) and catalase (CAT) via a pH-responsive polymer. The release of the enzymes can be first triggered by the mildly acidic tumor microenvironment and then be self-accelerated by the subsequent generation of gluconic acid. Once released, GOx can rapidly deplete glucose and molecular oxygen in tumor cells while the toxic side product, i.e., H2O2, can be readily decomposed by CAT for site-specific and low-toxicity tumor starvation. Furthermore, the enzymatic cascades also created a local hypoxia with the oxygen consumption and reductase-activated prodrugs for an additional chemotherapy. The current report represents a promising combinatorial approach using cascaded catalytic nanomedicine to reach concurrent selectivity and efficiency of cancer therapeutics.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.9b02466