Continuous in Situ Extraction toward Multiphase Complex Systems Based on Superwettable Membrane with Micro-/Nanostructures
Liquid-phase extraction is widely used in the chemical industry. Traditional extracting routes always involve multiple procedures, need a large floor space, and have long operating time. “Continuous in situ extraction” that can conduct a real-time integration of solutes extraction and solvents separ...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-10, Vol.12 (10), p.10000-10007 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Liquid-phase extraction is widely used in the chemical industry. Traditional extracting routes always involve multiple procedures, need a large floor space, and have long operating time. “Continuous in situ extraction” that can conduct a real-time integration of solutes extraction and solvents separation simultaneously would be of great significance. Superwettable materials offer us a good choice to separate different immiscible solvents; herein, we achieve continuous in situ extraction of multiphase complex systems by using a porous polytetrafluoroethylene membrane with nanostructure-induced superwettability. It realizes a rapid, selective, and efficient real-time removal of various extracting agents during a continuous process due to their wetting differences. Compared with traditional extraction, our route shows a distinct superiority on saving operating time, enhancing liquid recovery, and simplifying procedures, while still retaining high extracting performance. In addition, our membrane possesses excellent durability even after long-term work in harsh chemical environments or under strong mechanical impacts. Thus, we believe that it will provide a potential alternative for current industrial extractions. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.8b04328 |