Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity

To predict potential medical value or toxicity of nanoparticles (NPs), it is necessary to understand the chemical transformation during intracellular processes of NPs. However, it is a grand challenge to capture a high-resolution image of metallic NPs in a single cell and the chemical information on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-06, Vol.9 (6), p.6532-6547
Hauptverfasser: Wang, Liming, Zhang, Tianlu, Li, Panyun, Huang, Wanxia, Tang, Jinglong, Wang, Pengyang, Liu, Jing, Yuan, Qingxi, Bai, Ru, Li, Bai, Zhang, Kai, Zhao, Yuliang, Chen, Chunying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To predict potential medical value or toxicity of nanoparticles (NPs), it is necessary to understand the chemical transformation during intracellular processes of NPs. However, it is a grand challenge to capture a high-resolution image of metallic NPs in a single cell and the chemical information on intracellular NPs. Here, by integrating synchrotron radiation-beam transmission X-ray microscopy (SR-TXM) and SR-X-ray absorption near edge structure (SR-XANES) spectroscopy, we successfully capture the 3D distribution of silver NPs (AgNPs) inside a single human monocyte (THP-1), associated with the chemical transformation of silver. The results reveal that the cytotoxicity of AgNPs is largely due to the chemical transformation of particulate silver from elemental silver (Ag0) n , to Ag+ ions and Ag–O–, then Ag–S– species. These results provide direct evidence in the long-lasting debate on whether the nanoscale or the ionic form dominates the cytotoxicity of silver nanoparticles. Further, the present approach provides an integrated strategy capable of exploring the chemical origins of cytotoxicity in metallic nanoparticles.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b02483