Biomimetic Nanosonosensitizers Combined with Noninvasive Ultrasound Actuation to Reverse Drug Resistance and Sonodynamic-Enhanced Chemotherapy against Orthotopic Glioblastoma

Glioblastoma (GBM) is the most devastating brain tumor and highly resistant to conventional chemotherapy. Herein, we introduce biomimetic nanosonosensitizer systems (MDNPs) combined with noninvasive ultrasound (US) actuation for orthotopic GBM-targeted delivery and sonodynamic-enhanced chemotherapy....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-01, Vol.17 (1), p.421-436
Hauptverfasser: Chen, Huaqing, Zhang, Shengping, Fang, Quan, He, Huamei, Ren, Jian, Sun, Da, Lai, Jiazheng, Ma, Aiqing, Chen, Ze, Liu, Lanlan, Liang, Ruijing, Cai, Lintao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioblastoma (GBM) is the most devastating brain tumor and highly resistant to conventional chemotherapy. Herein, we introduce biomimetic nanosonosensitizer systems (MDNPs) combined with noninvasive ultrasound (US) actuation for orthotopic GBM-targeted delivery and sonodynamic-enhanced chemotherapy. MDNPs were fabricated with biodegradable and pH-sensitive polyglutamic acid (PGA) and the chemotherapeutic agent and sonosensitizer doxorubicin (DOX), camouflaged with human GBM U87 cell membranes. MDNPs presented homologous targeting accumulation and in vivo long-term circulation ability. They effectively passed through the blood–brain barrier (BBB) under US assistance and reached the orthotopic GBM site. MDNPs exhibited controllable US-elicited sonodynamic effect by generation of reactive oxygen species (ROS). ROS not only induced cancer cell apoptosis but also downregulated drug-resistance-related factors to disrupt chemoresistance and increase sensitivity to chemotherapy. The in vivo study of orthotopic GBM treatments further proved that MDNPs exhibited US-augmented synergistic antitumor efficacy and strongly prolonged the survival rate of mice. The use of low-dose DOX and the safety of US enabled repeated treatment (4 times) without obvious cardiotoxicity. This effective and safe US-enhanced chemotherapy strategy with the advantages of noninvasive brain delivery and high drug sensitivity holds great promise for deep-seated and drug-resistant tumors.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c08861