Low-Dose Sparse-View HAADF-STEM-EDX Tomography of Nanocrystals Using Unsupervised Deep Learning

High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) can be acquired together with energy dispersive X-ray (EDX) spectroscopy to give complementary information on the nanoparticles being imaged. Recent deep learning approaches show potential for accurate 3D tomograp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-07, Vol.16 (7), p.10314-10326
Hauptverfasser: Cha, Eunju, Chung, Hyungjin, Jang, Jaeduck, Lee, Junho, Lee, Eunha, Ye, Jong Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) can be acquired together with energy dispersive X-ray (EDX) spectroscopy to give complementary information on the nanoparticles being imaged. Recent deep learning approaches show potential for accurate 3D tomographic reconstruction for these applications, but a large number of high-quality electron micrographs are usually required for supervised training, which may be difficult to collect due to the damage on the particles from the electron beam. To overcome these limitations and enable tomographic reconstruction even in low-dose sparse-view conditions, here we present an unsupervised deep learning method for HAADF-STEM-EDX tomography. Specifically, to improve the EDX image quality from low-dose condition, a HAADF-constrained unsupervised denoising approach is proposed. Additionally, to enable extreme sparse-view tomographic reconstruction, an unsupervised view enrichment scheme is proposed in the projection domain. Extensive experiments with different types of quantum dots show that the proposed method offers a high-quality reconstruction even with only three projection views recorded under low-dose conditions.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c00168