Facile and Controllable Synthesis of the Renal-Clearable “Luminous Pearls” for in Vivo Afterglow/Magnetic Resonance Imaging
To date, the strategic exploration of a synthetic approach to afford persistent luminescent nanoparticles (PLNPs) integrated with precisely controlled size/monodispersity and renal-clearable capability remains extremely challenging. Herein, we report a facile synthetic process with an elucidated mec...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-01, Vol.16 (1), p.462-472 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To date, the strategic exploration of a synthetic approach to afford persistent luminescent nanoparticles (PLNPs) integrated with precisely controlled size/monodispersity and renal-clearable capability remains extremely challenging. Herein, we report a facile synthetic process with an elucidated mechanism to fine-tune the size for acquiring renal-clearable PLNPs, using mesoporous silica nanoparticles (MSNs) as a template. This strategy relies on the controlled crystallization of the precursor ions in the pore channels of MSNs at a high temperature, leading to the formation of monodispersed PLNPs with an average diameter as small as 2.5 nm after complete removal of MSN templates. The as-prepared ultrasmall PLNPs coated with polyethylene glycol exhibit uniform size, excellent water-dispersibility, good persistent luminescence, and high T 1 relaxivity (17.6 mM–1·S–1), ensuring their suitability for afterglow/magnetic resonance dual-modality imaging and subsequent in vivo renal clearance. Thus, our study provides a strategy to inspire the controlled synthesis of diverse PLNPs by using MSN templates, simultaneously addressing the critical issues of precise adjustment of size and body clearance for versatile biomedical applications. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.1c07243 |