Photoinduced Tuning of Schottky Barrier Height in Graphene/MoS 2 Heterojunction for Ultrahigh Performance Short Channel Phototransistor

Two-dimensional (2D) layered materials with properties such as a large surface-to-volume ratio, strong light interaction, and transparency are expected to be used in future optoelectronic applications. Many studies have focused on ways to increase absorption of 2D-layered materials for use in photod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-06, Vol.14 (6), p.7574-7580
Hauptverfasser: Lee, Ilmin, Kang, Won Tae, Kim, Ji Eun, Kim, Young Rae, Won, Ui Yeon, Lee, Young Hee, Yu, Woo Jong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional (2D) layered materials with properties such as a large surface-to-volume ratio, strong light interaction, and transparency are expected to be used in future optoelectronic applications. Many studies have focused on ways to increase absorption of 2D-layered materials for use in photodetectors. In this work, we demonstrate another strategy for improving photodetector performance using a graphene/MoS heterojunction phototransistor with a short channel length and a tunable Schottky barrier. The channel length of sub-30 nm, shorter than the diffusion length, decreases carrier recombination and carrier transit time in the channel and improves phototransistor performance. Furthermore, our graphene/MoS heterojunction phototransistor employed a tunable Schottky barrier that is only controlled by light and gate bias. It maintains a low dark current and an increased photocurrent. As a result, our graphene/MoS heterojunction phototransistor showed ultrahigh responsivity and detectivity of 2.2 × 10 A/W and 3.5 × 10 Jones, respectively. This is a considerable improvement compared to previous pristine MoS phototransistors. We confirmed an effective method to develop phototransistors based on 2D materials and obtained ultrahigh performance of our phototransistor, which is promising for high-performance optoelectronic applications.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c03425