Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb 2 O 5- x Nanocluster toward Superior Li-S Performance

The notorious shuttling behaviors and sluggish conversion kinetics of the intermediate lithium polysulfides (LPS) are hindering the practical application of lithium sulfur (Li-S) batteries. Herein, an ultrafine, amorphous, and oxygen-deficient niobium pentoxide nanocluster embedded in microporous ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-04, Vol.14 (4), p.4849-4860
Hauptverfasser: Luo, Dan, Zhang, Zhen, Li, Gaoran, Cheng, Shaobo, Li, Shuang, Li, Jingde, Gao, Rui, Li, Matthew, Sy, Serubbabel, Deng, Ya-Ping, Jiang, Yi, Zhu, Yanfei, Dou, Haozhen, Hu, Yongfeng, Yu, Aiping, Chen, Zhongwei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The notorious shuttling behaviors and sluggish conversion kinetics of the intermediate lithium polysulfides (LPS) are hindering the practical application of lithium sulfur (Li-S) batteries. Herein, an ultrafine, amorphous, and oxygen-deficient niobium pentoxide nanocluster embedded in microporous carbon nanospheres (A-Nb O @MCS) was developed as a multifunctional sulfur immobilizer and promoter toward superior shuttle inhibition and conversion catalyzation of LPS. The A-Nb O nanocluster implanted framework uniformizes sulfur distribution, exposes vast active interfaces, and offers a reduced ion/electron transportation pathway for expedited redox reaction. Moreover, the low crystallinity feature of A-Nb O manipulates the LPS chemical affinity, while the defect chemistry enhances the intrinsic conductivity and catalytic activity for rapid electrochemical conversions. Attributed to these superiorities, A-Nb O @MCS delivers good Li-S battery performances, that is, high areal capacity of 6.62 mAh cm under high sulfur loading and low electrolyte/sulfur ratio, superb rate capability, and cyclability over 1200 cycles with an ultralow capacity fading rate of 0.024% per cycle. This work provides a synergistic regulation on crystallinity and oxygen deficiency toward rapid and durable sulfur electrochemistry, holding a great promise in developing practically viable Li-S batteries and enlightening material engineering in related energy storage and conversion areas.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c00799