Catalytic Methane Mitigation Over Mesoporosity-Engineered Hierarchically Porous Pd/SSZ-13 Zeolites
Palladium-zeolites are active catalysts for abating methane (CH4), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH4 combustion, in particular under humid conditions. Here, using small...
Gespeichert in:
Veröffentlicht in: | ACS ES&T engineering 2024-11, Vol.4 (11), p.2734-2744 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2744 |
---|---|
container_issue | 11 |
container_start_page | 2734 |
container_title | ACS ES&T engineering |
container_volume | 4 |
creator | Liang, Gaozhou Guo, Anqi Xiong, Wuwan Chen, Dongdong Simon, Ulrich Ye, Daiqi Huang, Haibao Chen, Peirong |
description | Palladium-zeolites are active catalysts for abating methane (CH4), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH4 combustion, in particular under humid conditions. Here, using small-pore SSZ-13 zeolite as a showcase, we demonstrate mesoporosity engineering as an effective approach to boost the CH4 combustion performance of Pd-zeolites. A newly designed gemini quaternary ammonium surfactant, namely C18–4N2MP, was fabricated using inexpensive reagents and employed as a mesoporogen in the hydrothermal synthesis of hierarchically micro–meso–macro–porous SSZ-13 product. High-dispersion Pd catalysts were achieved by using the hierarchically porous SSZ-13 zeolites as supports. Physicochemical characterization and reaction kinetics disclosed that rational mesoporosity engineering of the hierarchically porous SSZ-13, simply by optimizing C18–4N2MP addition in the precursor gel prior to hydrothermal crystallization, favored the formation of highly dispersed PdO x active phase and, in turn, the CH4 combustion without noticeable accumulation of carbonaceous intermediates on the surface. Additionally, mesoporosity-optimized Pd/SSZ-13 displayed improved durability and outstanding moisture resistance during CH4 combustion. This study sheds new light on the fabrication of high-performance Pd-zeolite catalysts for CH4 emission abatement by facile engineering of zeolite mesoporosity. |
doi_str_mv | 10.1021/acsestengg.4c00347 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsestengg_4c00347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a378867160</sourcerecordid><originalsourceid>FETCH-LOGICAL-a167t-844ef5f29f2ad8511631b0e78d0ef2634309012adf483250a9971f82f63017d13</originalsourceid><addsrcrecordid>eNp9kM1qwzAQhEVpoSHNC_SkF3Cy-rEtH0tIm0JCAmkvuRjFXjkKrh0kpeC3r0oK7amnXXZmluEj5JHBlAFnM1159AG7ppnKCkDI_IaMeFZAAplMb__s92Ti_QkAuEgVU-mIHOY66HYItqJrDEfdIV3bYBsdbN_RzSe6ePf9uXe9t2FIFl1jO0SHNV1adNpVR1vpth3oNlounm7r2W63T5ige-xbG9A_kDujW4-Tnzkm78-Lt_kyWW1eXudPq0SzLA-JkhJNanhhuK5Vylgm2AEwVzWg4ZmQAgpgUTNSCZ6CLoqcGcVNJoDlNRNjwq9_q9jVOzTl2dkP7YaSQfkNqvwFVf6AiqHpNRS18tRfXBcr_hf4AgS0bl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalytic Methane Mitigation Over Mesoporosity-Engineered Hierarchically Porous Pd/SSZ-13 Zeolites</title><source>American Chemical Society</source><creator>Liang, Gaozhou ; Guo, Anqi ; Xiong, Wuwan ; Chen, Dongdong ; Simon, Ulrich ; Ye, Daiqi ; Huang, Haibao ; Chen, Peirong</creator><creatorcontrib>Liang, Gaozhou ; Guo, Anqi ; Xiong, Wuwan ; Chen, Dongdong ; Simon, Ulrich ; Ye, Daiqi ; Huang, Haibao ; Chen, Peirong</creatorcontrib><description>Palladium-zeolites are active catalysts for abating methane (CH4), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH4 combustion, in particular under humid conditions. Here, using small-pore SSZ-13 zeolite as a showcase, we demonstrate mesoporosity engineering as an effective approach to boost the CH4 combustion performance of Pd-zeolites. A newly designed gemini quaternary ammonium surfactant, namely C18–4N2MP, was fabricated using inexpensive reagents and employed as a mesoporogen in the hydrothermal synthesis of hierarchically micro–meso–macro–porous SSZ-13 product. High-dispersion Pd catalysts were achieved by using the hierarchically porous SSZ-13 zeolites as supports. Physicochemical characterization and reaction kinetics disclosed that rational mesoporosity engineering of the hierarchically porous SSZ-13, simply by optimizing C18–4N2MP addition in the precursor gel prior to hydrothermal crystallization, favored the formation of highly dispersed PdO x active phase and, in turn, the CH4 combustion without noticeable accumulation of carbonaceous intermediates on the surface. Additionally, mesoporosity-optimized Pd/SSZ-13 displayed improved durability and outstanding moisture resistance during CH4 combustion. This study sheds new light on the fabrication of high-performance Pd-zeolite catalysts for CH4 emission abatement by facile engineering of zeolite mesoporosity.</description><identifier>ISSN: 2690-0645</identifier><identifier>EISSN: 2690-0645</identifier><identifier>DOI: 10.1021/acsestengg.4c00347</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS ES&T engineering, 2024-11, Vol.4 (11), p.2734-2744</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a167t-844ef5f29f2ad8511631b0e78d0ef2634309012adf483250a9971f82f63017d13</cites><orcidid>0000-0001-9919-990X ; 0000-0002-6118-0573 ; 0000-0003-1014-8044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsestengg.4c00347$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsestengg.4c00347$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Liang, Gaozhou</creatorcontrib><creatorcontrib>Guo, Anqi</creatorcontrib><creatorcontrib>Xiong, Wuwan</creatorcontrib><creatorcontrib>Chen, Dongdong</creatorcontrib><creatorcontrib>Simon, Ulrich</creatorcontrib><creatorcontrib>Ye, Daiqi</creatorcontrib><creatorcontrib>Huang, Haibao</creatorcontrib><creatorcontrib>Chen, Peirong</creatorcontrib><title>Catalytic Methane Mitigation Over Mesoporosity-Engineered Hierarchically Porous Pd/SSZ-13 Zeolites</title><title>ACS ES&T engineering</title><addtitle>ACS EST Engg</addtitle><description>Palladium-zeolites are active catalysts for abating methane (CH4), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH4 combustion, in particular under humid conditions. Here, using small-pore SSZ-13 zeolite as a showcase, we demonstrate mesoporosity engineering as an effective approach to boost the CH4 combustion performance of Pd-zeolites. A newly designed gemini quaternary ammonium surfactant, namely C18–4N2MP, was fabricated using inexpensive reagents and employed as a mesoporogen in the hydrothermal synthesis of hierarchically micro–meso–macro–porous SSZ-13 product. High-dispersion Pd catalysts were achieved by using the hierarchically porous SSZ-13 zeolites as supports. Physicochemical characterization and reaction kinetics disclosed that rational mesoporosity engineering of the hierarchically porous SSZ-13, simply by optimizing C18–4N2MP addition in the precursor gel prior to hydrothermal crystallization, favored the formation of highly dispersed PdO x active phase and, in turn, the CH4 combustion without noticeable accumulation of carbonaceous intermediates on the surface. Additionally, mesoporosity-optimized Pd/SSZ-13 displayed improved durability and outstanding moisture resistance during CH4 combustion. This study sheds new light on the fabrication of high-performance Pd-zeolite catalysts for CH4 emission abatement by facile engineering of zeolite mesoporosity.</description><issn>2690-0645</issn><issn>2690-0645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qwzAQhEVpoSHNC_SkF3Cy-rEtH0tIm0JCAmkvuRjFXjkKrh0kpeC3r0oK7amnXXZmluEj5JHBlAFnM1159AG7ppnKCkDI_IaMeFZAAplMb__s92Ti_QkAuEgVU-mIHOY66HYItqJrDEfdIV3bYBsdbN_RzSe6ePf9uXe9t2FIFl1jO0SHNV1adNpVR1vpth3oNlounm7r2W63T5ige-xbG9A_kDujW4-Tnzkm78-Lt_kyWW1eXudPq0SzLA-JkhJNanhhuK5Vylgm2AEwVzWg4ZmQAgpgUTNSCZ6CLoqcGcVNJoDlNRNjwq9_q9jVOzTl2dkP7YaSQfkNqvwFVf6AiqHpNRS18tRfXBcr_hf4AgS0bl8</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Liang, Gaozhou</creator><creator>Guo, Anqi</creator><creator>Xiong, Wuwan</creator><creator>Chen, Dongdong</creator><creator>Simon, Ulrich</creator><creator>Ye, Daiqi</creator><creator>Huang, Haibao</creator><creator>Chen, Peirong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9919-990X</orcidid><orcidid>https://orcid.org/0000-0002-6118-0573</orcidid><orcidid>https://orcid.org/0000-0003-1014-8044</orcidid></search><sort><creationdate>20241108</creationdate><title>Catalytic Methane Mitigation Over Mesoporosity-Engineered Hierarchically Porous Pd/SSZ-13 Zeolites</title><author>Liang, Gaozhou ; Guo, Anqi ; Xiong, Wuwan ; Chen, Dongdong ; Simon, Ulrich ; Ye, Daiqi ; Huang, Haibao ; Chen, Peirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a167t-844ef5f29f2ad8511631b0e78d0ef2634309012adf483250a9971f82f63017d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Gaozhou</creatorcontrib><creatorcontrib>Guo, Anqi</creatorcontrib><creatorcontrib>Xiong, Wuwan</creatorcontrib><creatorcontrib>Chen, Dongdong</creatorcontrib><creatorcontrib>Simon, Ulrich</creatorcontrib><creatorcontrib>Ye, Daiqi</creatorcontrib><creatorcontrib>Huang, Haibao</creatorcontrib><creatorcontrib>Chen, Peirong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS ES&T engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Gaozhou</au><au>Guo, Anqi</au><au>Xiong, Wuwan</au><au>Chen, Dongdong</au><au>Simon, Ulrich</au><au>Ye, Daiqi</au><au>Huang, Haibao</au><au>Chen, Peirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Methane Mitigation Over Mesoporosity-Engineered Hierarchically Porous Pd/SSZ-13 Zeolites</atitle><jtitle>ACS ES&T engineering</jtitle><addtitle>ACS EST Engg</addtitle><date>2024-11-08</date><risdate>2024</risdate><volume>4</volume><issue>11</issue><spage>2734</spage><epage>2744</epage><pages>2734-2744</pages><issn>2690-0645</issn><eissn>2690-0645</eissn><abstract>Palladium-zeolites are active catalysts for abating methane (CH4), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH4 combustion, in particular under humid conditions. Here, using small-pore SSZ-13 zeolite as a showcase, we demonstrate mesoporosity engineering as an effective approach to boost the CH4 combustion performance of Pd-zeolites. A newly designed gemini quaternary ammonium surfactant, namely C18–4N2MP, was fabricated using inexpensive reagents and employed as a mesoporogen in the hydrothermal synthesis of hierarchically micro–meso–macro–porous SSZ-13 product. High-dispersion Pd catalysts were achieved by using the hierarchically porous SSZ-13 zeolites as supports. Physicochemical characterization and reaction kinetics disclosed that rational mesoporosity engineering of the hierarchically porous SSZ-13, simply by optimizing C18–4N2MP addition in the precursor gel prior to hydrothermal crystallization, favored the formation of highly dispersed PdO x active phase and, in turn, the CH4 combustion without noticeable accumulation of carbonaceous intermediates on the surface. Additionally, mesoporosity-optimized Pd/SSZ-13 displayed improved durability and outstanding moisture resistance during CH4 combustion. This study sheds new light on the fabrication of high-performance Pd-zeolite catalysts for CH4 emission abatement by facile engineering of zeolite mesoporosity.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsestengg.4c00347</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9919-990X</orcidid><orcidid>https://orcid.org/0000-0002-6118-0573</orcidid><orcidid>https://orcid.org/0000-0003-1014-8044</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2690-0645 |
ispartof | ACS ES&T engineering, 2024-11, Vol.4 (11), p.2734-2744 |
issn | 2690-0645 2690-0645 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsestengg_4c00347 |
source | American Chemical Society |
title | Catalytic Methane Mitigation Over Mesoporosity-Engineered Hierarchically Porous Pd/SSZ-13 Zeolites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Methane%20Mitigation%20Over%20Mesoporosity-Engineered%20Hierarchically%20Porous%20Pd/SSZ-13%20Zeolites&rft.jtitle=ACS%20ES&T%20engineering&rft.au=Liang,%20Gaozhou&rft.date=2024-11-08&rft.volume=4&rft.issue=11&rft.spage=2734&rft.epage=2744&rft.pages=2734-2744&rft.issn=2690-0645&rft.eissn=2690-0645&rft_id=info:doi/10.1021/acsestengg.4c00347&rft_dat=%3Cacs_cross%3Ea378867160%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |