Catalytic Methane Mitigation Over Mesoporosity-Engineered Hierarchically Porous Pd/SSZ-13 Zeolites

Palladium-zeolites are active catalysts for abating methane (CH4), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH4 combustion, in particular under humid conditions. Here, using small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS ES&T engineering 2024-11, Vol.4 (11), p.2734-2744
Hauptverfasser: Liang, Gaozhou, Guo, Anqi, Xiong, Wuwan, Chen, Dongdong, Simon, Ulrich, Ye, Daiqi, Huang, Haibao, Chen, Peirong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Palladium-zeolites are active catalysts for abating methane (CH4), the second largest greenhouse gas contributing to climate change, via catalytic combustion. Yet, it remains challenging to improve the activity of Pd-zeolites in CH4 combustion, in particular under humid conditions. Here, using small-pore SSZ-13 zeolite as a showcase, we demonstrate mesoporosity engineering as an effective approach to boost the CH4 combustion performance of Pd-zeolites. A newly designed gemini quaternary ammonium surfactant, namely C18–4N2MP, was fabricated using inexpensive reagents and employed as a mesoporogen in the hydrothermal synthesis of hierarchically micro–meso–macro–porous SSZ-13 product. High-dispersion Pd catalysts were achieved by using the hierarchically porous SSZ-13 zeolites as supports. Physicochemical characterization and reaction kinetics disclosed that rational mesoporosity engineering of the hierarchically porous SSZ-13, simply by optimizing C18–4N2MP addition in the precursor gel prior to hydrothermal crystallization, favored the formation of highly dispersed PdO x active phase and, in turn, the CH4 combustion without noticeable accumulation of carbonaceous intermediates on the surface. Additionally, mesoporosity-optimized Pd/SSZ-13 displayed improved durability and outstanding moisture resistance during CH4 combustion. This study sheds new light on the fabrication of high-performance Pd-zeolite catalysts for CH4 emission abatement by facile engineering of zeolite mesoporosity.
ISSN:2690-0645
2690-0645
DOI:10.1021/acsestengg.4c00347