Toward Stable Monolithic Perovskite/Silicon Tandem Photovoltaics: A Six-Month Outdoor Performance Study in a Hot and Humid Climate
Perovskite/silicon tandem solar cells are emerging as a high-efficiency and prospectively cost-effective solar technology with great promise for deployment at the utility scale. However, despite the remarkable performance progress reported lately, assuring sufficient device stabilityparticularly of...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2021-08, Vol.6 (8), p.2944-2951 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Perovskite/silicon tandem solar cells are emerging as a high-efficiency and prospectively cost-effective solar technology with great promise for deployment at the utility scale. However, despite the remarkable performance progress reported lately, assuring sufficient device stabilityparticularly of the perovskite top cellremains a challenge on the path to practical impact. In this work, we analyze the outdoor performance of encapsulated bifacial perovskite/silicon tandems, by carrying out field-testing in Saudi Arabia. Over a six month experiment, we find that the open circuit voltage retains its initial value, whereas the fill factor degrades, which is found to have two causes. A first degradation mechanism is linked with ion migration in the perovskite and is largely reversible overnight, though it does induce hysteretic behavior over time. A second, irreversible, mechanism is caused by corrosion of the silver metal top contact with the formation of silver iodide. These findings provide directions for the design of new and more stable perovskite/silicon tandems |
---|---|
ISSN: | 2380-8195 2380-8195 |
DOI: | 10.1021/acsenergylett.1c01018 |