HDAC3 Inhibitor RGFP966 Ameliorated Neuroinflammation in the Cuprizone-Induced Demyelinating Mouse Model and LPS-Stimulated BV2 Cells by Downregulating the P2X7R/STAT3/NF-κB65/NLRP3 Activation
Suppression of excessive microglial overactivation can prevent the progression of multiple sclerosis (MS). Histone deacetylases 3 inhibitor (HDAC3i) has been demonstrated to exert anti-inflammatory effects by suppressing microglia (M1-liked) activation. Here, we demonstrate that the RGFP966 (a selec...
Gespeichert in:
Veröffentlicht in: | ACS chemical neuroscience 2022-09, Vol.13 (17), p.2579-2598 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppression of excessive microglial overactivation can prevent the progression of multiple sclerosis (MS). Histone deacetylases 3 inhibitor (HDAC3i) has been demonstrated to exert anti-inflammatory effects by suppressing microglia (M1-liked) activation. Here, we demonstrate that the RGFP966 (a selective inhibitor of HDAC3) protects white matter after cuprizone-induced demyelination, as shown by reductions in neurological behavioral deficits and increases in myelin basic protein. Moreover, in this study, we found that RGFP966 caused a significant reduction in the levels of inflammatory cytokines, including IL-1β, TNF-α, as well as iNOS, and inhibited microglial (M1-liked) activation in the experimental cuprizone model and LPS-stimulated BV2 cells. Meanwhile, RGFP966 alleviated apoptosis of LPS-induced BV2 cells in vitro. Furthermore, RGFP966 suppressed the expression of P2X7R, NLRP3, ASC, IL-18, IL-1β, and caspase-1, inhibited the ratio of phosphorylated-STAT3/STAT3 and phosphorylated NF-κB p65/NF-κB p65, as well as increased acetylated NF-κB p65 in vitro and in vivo. Furthermore, we confirmed that brilliant blue G (antagonists of P2X7R) suppressed the expression of microglial NLRP3, IL-18, IL-1β, caspase-1, NF-κB p65 (including phosphorylated NF-κB p65), and STAT3 (including phosphorylated STAT3) in vitro. These findings demonstrated that RFFP966 alleviated the inflammatory response and exerted a neuroprotective effect possibly by modulating P2X7R/STAT3/NF-κB65/NLRP3 signaling pathways. Thus, HDAD3 might be considered a promising intervention target for neurodegenerative diseases, such as MS. |
---|---|
ISSN: | 1948-7193 1948-7193 |
DOI: | 10.1021/acschemneuro.1c00826 |