Kinetic Analysis on the Role of Bicarbonate in Carbon Dioxide Electroreduction at Immobilized Cobalt Phthalocyanine

The mechanism for carbon dioxide reduction (CO2RR) to carbon monoxide (CO) at immobilized cobalt phthalocyanine (CoPc) in aqueous electrolytes has been widely debated. In this work, we investigated the mechanism of CO2RR to CO on CoPc via experimental reaction kinetics coupled with model fitting. Un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-04, Vol.10 (7), p.4326-4336
Hauptverfasser: Zeng, Joy S, Corbin, Nathan, Williams, Kindle, Manthiram, Karthish
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4336
container_issue 7
container_start_page 4326
container_title ACS catalysis
container_volume 10
creator Zeng, Joy S
Corbin, Nathan
Williams, Kindle
Manthiram, Karthish
description The mechanism for carbon dioxide reduction (CO2RR) to carbon monoxide (CO) at immobilized cobalt phthalocyanine (CoPc) in aqueous electrolytes has been widely debated. In this work, we investigated the mechanism of CO2RR to CO on CoPc via experimental reaction kinetics coupled with model fitting. Unexpectedly, reactant order dependences and Tafel slopes deviate from commonly expected values and change depending on the testing conditions. For example, (1) the effect of bicarbonate deviates from power law kinetics and transitions from inhibitory to promotional with increasingly reductive potential, and (2) the CO2 order dependence deviates from unity at more-reductive potentials. We propose a kinetic model, chosen from more than 15 candidate models, that is able to quantitatively fit all of the experimental data. The model invokes (1) catalyst poisoning via bicarbonate electrosorption, (2) mixed control between concerted proton–electron transfer (CPET) and sequential electron transfer-proton transfer (ET-PT), and (3) both water and bicarbonate as kinetically relevant proton donors. The proposed model also predicts that the relative importance of the above factors changes depending on the reaction conditions, highlighting the potential downfalls of broadly applying reaction mechanisms that were inferred from kinetic data collected in a narrow range of testing conditions. This study emphasizes the importance of cohesively using kinetic data collected over a wide range of operating conditions to test and formulate kinetic models of electrocatalytic reactions.
doi_str_mv 10.1021/acscatal.9b05272
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_9b05272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c778888641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-3da32d441a060ddd0f285f4512b494fc9550c60bc627b5f805f765a72bd5ff4b3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGrvHvMB3Jpkk93tsa5ViwVF9LxM_tGUdCNJCtZP72oreHEuM8Ob9wZ-CF1SMqWE0WtQSUEGP51JIljNTtCIUSEKwUtx-mc-R5OUNmQoLqqmJiOUHl1vslN43oPfJ5dw6HFeG_wSvMHB4hunIMrQQzbY9bj9WfCtCx9OG7zwRuUYotE7ld0gQMbL7TZI592n0bgNEnzGz-u8Bh_UHvrh3QU6s-CTmRz7GL3dLV7bh2L1dL9s56sCyqbJRamhZJpzCqQiWmtiWSMsF5RJPuNWzYQgqiJSVayWwjZE2LoSUDOphbVclmNEDrkqhpSisd17dFuI-46S7ptb98utO3IbLFcHy6B0m7CLA5X0__kXwSBzJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic Analysis on the Role of Bicarbonate in Carbon Dioxide Electroreduction at Immobilized Cobalt Phthalocyanine</title><source>ACS Publications</source><creator>Zeng, Joy S ; Corbin, Nathan ; Williams, Kindle ; Manthiram, Karthish</creator><creatorcontrib>Zeng, Joy S ; Corbin, Nathan ; Williams, Kindle ; Manthiram, Karthish</creatorcontrib><description>The mechanism for carbon dioxide reduction (CO2RR) to carbon monoxide (CO) at immobilized cobalt phthalocyanine (CoPc) in aqueous electrolytes has been widely debated. In this work, we investigated the mechanism of CO2RR to CO on CoPc via experimental reaction kinetics coupled with model fitting. Unexpectedly, reactant order dependences and Tafel slopes deviate from commonly expected values and change depending on the testing conditions. For example, (1) the effect of bicarbonate deviates from power law kinetics and transitions from inhibitory to promotional with increasingly reductive potential, and (2) the CO2 order dependence deviates from unity at more-reductive potentials. We propose a kinetic model, chosen from more than 15 candidate models, that is able to quantitatively fit all of the experimental data. The model invokes (1) catalyst poisoning via bicarbonate electrosorption, (2) mixed control between concerted proton–electron transfer (CPET) and sequential electron transfer-proton transfer (ET-PT), and (3) both water and bicarbonate as kinetically relevant proton donors. The proposed model also predicts that the relative importance of the above factors changes depending on the reaction conditions, highlighting the potential downfalls of broadly applying reaction mechanisms that were inferred from kinetic data collected in a narrow range of testing conditions. This study emphasizes the importance of cohesively using kinetic data collected over a wide range of operating conditions to test and formulate kinetic models of electrocatalytic reactions.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.9b05272</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2020-04, Vol.10 (7), p.4326-4336</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-3da32d441a060ddd0f285f4512b494fc9550c60bc627b5f805f765a72bd5ff4b3</citedby><cites>FETCH-LOGICAL-a388t-3da32d441a060ddd0f285f4512b494fc9550c60bc627b5f805f765a72bd5ff4b3</cites><orcidid>0000-0001-9640-7849 ; 0000-0001-9260-3391 ; 0000-0002-3443-3504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.9b05272$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.9b05272$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zeng, Joy S</creatorcontrib><creatorcontrib>Corbin, Nathan</creatorcontrib><creatorcontrib>Williams, Kindle</creatorcontrib><creatorcontrib>Manthiram, Karthish</creatorcontrib><title>Kinetic Analysis on the Role of Bicarbonate in Carbon Dioxide Electroreduction at Immobilized Cobalt Phthalocyanine</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The mechanism for carbon dioxide reduction (CO2RR) to carbon monoxide (CO) at immobilized cobalt phthalocyanine (CoPc) in aqueous electrolytes has been widely debated. In this work, we investigated the mechanism of CO2RR to CO on CoPc via experimental reaction kinetics coupled with model fitting. Unexpectedly, reactant order dependences and Tafel slopes deviate from commonly expected values and change depending on the testing conditions. For example, (1) the effect of bicarbonate deviates from power law kinetics and transitions from inhibitory to promotional with increasingly reductive potential, and (2) the CO2 order dependence deviates from unity at more-reductive potentials. We propose a kinetic model, chosen from more than 15 candidate models, that is able to quantitatively fit all of the experimental data. The model invokes (1) catalyst poisoning via bicarbonate electrosorption, (2) mixed control between concerted proton–electron transfer (CPET) and sequential electron transfer-proton transfer (ET-PT), and (3) both water and bicarbonate as kinetically relevant proton donors. The proposed model also predicts that the relative importance of the above factors changes depending on the reaction conditions, highlighting the potential downfalls of broadly applying reaction mechanisms that were inferred from kinetic data collected in a narrow range of testing conditions. This study emphasizes the importance of cohesively using kinetic data collected over a wide range of operating conditions to test and formulate kinetic models of electrocatalytic reactions.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGrvHvMB3Jpkk93tsa5ViwVF9LxM_tGUdCNJCtZP72oreHEuM8Ob9wZ-CF1SMqWE0WtQSUEGP51JIljNTtCIUSEKwUtx-mc-R5OUNmQoLqqmJiOUHl1vslN43oPfJ5dw6HFeG_wSvMHB4hunIMrQQzbY9bj9WfCtCx9OG7zwRuUYotE7ld0gQMbL7TZI592n0bgNEnzGz-u8Bh_UHvrh3QU6s-CTmRz7GL3dLV7bh2L1dL9s56sCyqbJRamhZJpzCqQiWmtiWSMsF5RJPuNWzYQgqiJSVayWwjZE2LoSUDOphbVclmNEDrkqhpSisd17dFuI-46S7ptb98utO3IbLFcHy6B0m7CLA5X0__kXwSBzJw</recordid><startdate>20200403</startdate><enddate>20200403</enddate><creator>Zeng, Joy S</creator><creator>Corbin, Nathan</creator><creator>Williams, Kindle</creator><creator>Manthiram, Karthish</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9640-7849</orcidid><orcidid>https://orcid.org/0000-0001-9260-3391</orcidid><orcidid>https://orcid.org/0000-0002-3443-3504</orcidid></search><sort><creationdate>20200403</creationdate><title>Kinetic Analysis on the Role of Bicarbonate in Carbon Dioxide Electroreduction at Immobilized Cobalt Phthalocyanine</title><author>Zeng, Joy S ; Corbin, Nathan ; Williams, Kindle ; Manthiram, Karthish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-3da32d441a060ddd0f285f4512b494fc9550c60bc627b5f805f765a72bd5ff4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Joy S</creatorcontrib><creatorcontrib>Corbin, Nathan</creatorcontrib><creatorcontrib>Williams, Kindle</creatorcontrib><creatorcontrib>Manthiram, Karthish</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Joy S</au><au>Corbin, Nathan</au><au>Williams, Kindle</au><au>Manthiram, Karthish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Analysis on the Role of Bicarbonate in Carbon Dioxide Electroreduction at Immobilized Cobalt Phthalocyanine</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-04-03</date><risdate>2020</risdate><volume>10</volume><issue>7</issue><spage>4326</spage><epage>4336</epage><pages>4326-4336</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The mechanism for carbon dioxide reduction (CO2RR) to carbon monoxide (CO) at immobilized cobalt phthalocyanine (CoPc) in aqueous electrolytes has been widely debated. In this work, we investigated the mechanism of CO2RR to CO on CoPc via experimental reaction kinetics coupled with model fitting. Unexpectedly, reactant order dependences and Tafel slopes deviate from commonly expected values and change depending on the testing conditions. For example, (1) the effect of bicarbonate deviates from power law kinetics and transitions from inhibitory to promotional with increasingly reductive potential, and (2) the CO2 order dependence deviates from unity at more-reductive potentials. We propose a kinetic model, chosen from more than 15 candidate models, that is able to quantitatively fit all of the experimental data. The model invokes (1) catalyst poisoning via bicarbonate electrosorption, (2) mixed control between concerted proton–electron transfer (CPET) and sequential electron transfer-proton transfer (ET-PT), and (3) both water and bicarbonate as kinetically relevant proton donors. The proposed model also predicts that the relative importance of the above factors changes depending on the reaction conditions, highlighting the potential downfalls of broadly applying reaction mechanisms that were inferred from kinetic data collected in a narrow range of testing conditions. This study emphasizes the importance of cohesively using kinetic data collected over a wide range of operating conditions to test and formulate kinetic models of electrocatalytic reactions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.9b05272</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9640-7849</orcidid><orcidid>https://orcid.org/0000-0001-9260-3391</orcidid><orcidid>https://orcid.org/0000-0002-3443-3504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-04, Vol.10 (7), p.4326-4336
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_9b05272
source ACS Publications
title Kinetic Analysis on the Role of Bicarbonate in Carbon Dioxide Electroreduction at Immobilized Cobalt Phthalocyanine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Analysis%20on%20the%20Role%20of%20Bicarbonate%20in%20Carbon%20Dioxide%20Electroreduction%20at%20Immobilized%20Cobalt%20Phthalocyanine&rft.jtitle=ACS%20catalysis&rft.au=Zeng,%20Joy%20S&rft.date=2020-04-03&rft.volume=10&rft.issue=7&rft.spage=4326&rft.epage=4336&rft.pages=4326-4336&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.9b05272&rft_dat=%3Cacs_cross%3Ec778888641%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true