Understanding the Phase-Induced Electrocatalytic Oxygen Evolution Reaction Activity on FeOOH Nanostructures

The crystalline phase plays a crucial, yet not well-understood, role in enhancing the oxygen evolution reaction (OER) performance of iron oxyhydroxide (FeOOH) materials. Herein, single-phase (α-, β-, and δ-) and mixed-phase (α/β-, α/δ-, and β/δ-) FeOOH nanostructures have been successfully synthesiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2019-12, Vol.9 (12), p.10705-10711
Hauptverfasser: Hu, Jing, Li, Siwei, Chu, Jiayu, Niu, Siqi, Wang, Jing, Du, Yunchen, Li, Zhonghua, Han, Xijiang, Xu, Ping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The crystalline phase plays a crucial, yet not well-understood, role in enhancing the oxygen evolution reaction (OER) performance of iron oxyhydroxide (FeOOH) materials. Herein, single-phase (α-, β-, and δ-) and mixed-phase (α/β-, α/δ-, and β/δ-) FeOOH nanostructures have been successfully synthesized through a controlled solvothermal route. Combined analyses of X-ray photoelectron spectroscopy and partial density of state calculation suggest that rich oxygen vacancies confined in the mixed-phase FeOOH samples (with optimized electronic structure) can effectively improve the OER activity. Notably, the mixed phase of β/δ-FeOOH displays an enhanced OER activity and stability in the alkaline media, with a very low overpotential of ∼180 mV vs a reversible hydrogen electrode at 10 mA cm–2. Understanding of the phase-induced activity may also pave a pathway for the design and synthesis of highly efficient electrocatalysts.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.9b03876