A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution
Platinum is a nearly perfect catalyst for the hydrogen evolution reaction, and its high activity has conventionally been explained by its close-to-thermoneutral hydrogen binding energy (G ∼ 0). However, many candidate nonprecious metal catalysts bind hydrogen with similar strengths but exhibit order...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2020-01, Vol.10 (1), p.121-128 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Platinum is a nearly perfect catalyst for the hydrogen evolution reaction, and its high activity has conventionally been explained by its close-to-thermoneutral hydrogen binding energy (G ∼ 0). However, many candidate nonprecious metal catalysts bind hydrogen with similar strengths but exhibit orders-of-magnitude lower activity for this reaction. In this study, we employ electronic structure methods that allow fully potential-dependent reaction barriers to be calculated, in order to develop a complete working picture of hydrogen evolution on platinum. Through the resulting ab initio microkinetic models, we assess the mechanistic origins of Pt’s high activity. Surprisingly, we find that the G ∼ 0 hydrogen atoms are inert in the kinetically relevant region and that the active hydrogen atoms have ΔG’s much weaker, similar to that of gold. These on-top hydrogens have particularly low barriers, which we compare to those of gold, explaining the high reaction rates, and the exponential variations in coverage lead directly to Pt’s strong kinetic response to the applied potential. This explains the unique reactivity of Pt that is missed by conventional Sabatier analyses and suggests true design criteria for nonprecious alternatives. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.9b02799 |