Spectroscopic Characterization and Mechanistic Studies on Visible Light Photoredox Carbon–Carbon Bond Formation by Bis(arylimino)acenaphthene Copper Photosensitizers

Currently, the most popular molecular photosensitizers used for synthetic organic chemistry and energy applications are still the noble-metal-based ruthenium and iridium complexes that usually require expensive metal and ligand precursors. In contrast, bis­(arylimino)­acenaphthene (Ar-BIAN) is an es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2018-12, Vol.8 (12), p.11277-11286
Hauptverfasser: Ng, Yik Yie, Tan, Lisa Jiaying, Ng, Shue Mei, Chai, Yoke Tin, Ganguly, Rakesh, Du, Yonghua, Yeow, Edwin Kok Lee, Soo, Han Sen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, the most popular molecular photosensitizers used for synthetic organic chemistry and energy applications are still the noble-metal-based ruthenium and iridium complexes that usually require expensive metal and ligand precursors. In contrast, bis­(arylimino)­acenaphthene (Ar-BIAN) is an established redox noninnocent π-accepting ligand that is easily assembled in one condensation step from affordable and commercially available precursors. Herein, we have developed a series of Ar-BIAN CuI complexes as visible-light-harvesting photosensitizers. Notably, one of these panchromatic, homoleptic Ar-BIAN CuI complexes exhibits a radiative recombination lifetime that is longer than diffusion-controlled reactions, as observed by time-correlated single-photon counting spectroscopy. Ar-BIAN CuI facilitates visible-light-promoted atom-transfer radical addition reactions via carbon–carbon bond formation with CBr3 radicals in good yields of up to 75%. Steady-state and transient absorption spectroscopic measurements, together with spectroelectrochemical experiments and intermediate isolation studies, were performed to obtain insights into this photoredox catalysis and provide guidelines for the general deployment of Ar-BIAN CuI photosensitizers in synthetic organic chemistry and renewable energy applications.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.8b02502