Dual Effects of Cyclopentadienyl Ligands on Rh(III)-Catalyzed Dehydrogenative Arylation of Electron-Rich Alkenes
Despite extensive research on transition metal-catalyzed Fujiwara–Moritani type C–H olefinations, the alkenes used in these transformations are still mainly limited to active acrylate esters and styrenes. Selective aryl C–H olefination with electron-rich alkenes is recognized as a challenging issue....
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2018-09, Vol.8 (9), p.8070-8076 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite extensive research on transition metal-catalyzed Fujiwara–Moritani type C–H olefinations, the alkenes used in these transformations are still mainly limited to active acrylate esters and styrenes. Selective aryl C–H olefination with electron-rich alkenes is recognized as a challenging issue. We herein report that simple and readily accessible electron-deficient [CpRh(III)] and [CpCF3 Rh(III)] (CpCF3 = C5Me4CF3) complexes are powerful catalysts for dehydrogenative arylation of electron-rich alkenes, including vinyl acetates, enamides, and vinyl ethers. Employing an electron-withdrawing Cp or CpCF3 ligand instead of the privileged Cp* (C5Me5) ligand not only can facilitate the electrophilic aryl C–H rhodation but also can lower the olefin insertion barrier. Both electron-withdrawing and electron-donating directing groups such as -CONR2 and -NHAc could be employed in these reactions, which provides convenient routes toward a series styryl acetates, N-acetylindoles, and aryl methyl ketones. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.8b01753 |