Synthesis of Supported Planar Iron Oxide Nanoparticles and Their Chemo- and Stereoselectivity for Hydrogenation of Alkynes
Nature uses enzymes to dissociate and transfer H2 by combining Fe2+ and H+ acceptor/donor catalytic active sites. Following a biomimetic approach, it is reported here that very small planar Fe2,3+ oxide nanoparticles (2.0 ± 0.5 nm) supported on slightly acidic inorganic oxides (nanocrystalline TiO2,...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2017-05, Vol.7 (5), p.3721-3729 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nature uses enzymes to dissociate and transfer H2 by combining Fe2+ and H+ acceptor/donor catalytic active sites. Following a biomimetic approach, it is reported here that very small planar Fe2,3+ oxide nanoparticles (2.0 ± 0.5 nm) supported on slightly acidic inorganic oxides (nanocrystalline TiO2, ZrO2, ZnO) act as bifunctional catalysts to dissociate and transfer H2 to alkynes chemo- and stereoselectively. This catalyst is synthesized by oxidative dispersion of Fe0 nanoparticles at the isoelectronic point of the support. The resulting Fe2+,3+ solid catalyzes not only, in batch, the semihydrogenation of different alkynes with good yields but also the removal of acetylene from ethylene streams with >99.9% conversion and selectivity. These efficient and robust non-noble-metal catalysts, alternative to existing industrial technologies based on Pd, constitute a step forward toward the design of fully sustainable and nontoxic selective hydrogenation solid catalysts. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.7b00037 |